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Abstract

There exist many frame structural systems having some attachments reducible to

damped spring-mass systems, concentracted masses and spring supports, For free and

forced vibration analyses of such a system an analytical method based on the receptance

method is presented. A framed structure having attachments is considered as a combined

system composed of various Timoshenko beam and bar elements and the attachments. So,

the vibration characteristics of the system are calculated by synthesizing receptances and

Support Displacement Transfer Ratio (SDTR) of beam and bar elements in spectral and /or

closed forms, and receptances of the attachments. In forced vibration analysis, arbitray ex-
citation forces at a point on the structure and displacement excitations at boundaries are
considered. Numerical investigations are carried out for verification of the presented
method, and the results show good accuracy and very high computational efficiency.

1. Introduction

There exist various kinds of framed structures
composed of beam /bar elements and subsystems
reducible to damped spring-mass systems. It is
needed to develope an efficient method for vi-
bration analysis of such a combined structural
system, In this study, an analytical method based
on the receptance method is developed to calcu-
late efficiently free vibration characteristics and
dynamic responses to arbitrary excitations,

As to applications of the receptance method,

Bishop et al.{1, 2](1960,1965) showed a formu-
lation for vibration analysis of an Euler beam hav-
ing a concentrated mass Azimi et, al.[3, 4](1984,
1986) carried out natural vibration analysis of a
combined system composed of rectangular plate
elements, Kelkell5](1987) obtained natural vi-
bration characteristics of a rectangular stiffened
plate by treating it as a combined system compos-
ed of a rectangular plate and Euler beam ele-
ments. Han et. al. {6, 71(1989) derived an ef-
ficient formulation for free and forced vibration
analysis of a rectangular plate having damped
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spring-mass systems by considering it as a com-
bined system. In their works Support Displace-
ment Transfer Ratio(SDTR) which was concep-
tually similar to receptance was introduced for ef-
ficient calculations of dynamic responses to dis-
placement excitation applied to boundaries of the
combined system,

In this study, an analytical method based on
the receptance method is developed for free and
forced vibration analysis of a framed structure
having damped spring-mass systems, concentrat-
ed masses and /or spring supports. In the formu-
lation of the problem, a framed structure having
the attachments is treated as a combined system
composed of various Timoshenko beam and bar
elelements, Free vibration characteristics and dy-
namic responses of the combined system to arbi-
trary excitations are calculated by synthesizing
receptances and SDTR’s of the elements which
are derived in both spectral and closed forms. As
to dynamics responses, arbitrary excitation forces
applied at a point on the structure and displace-
ment excitations applied to boundaries are con-
sidered.

Some numerical investigations are made to ver-
ify accuracy and computational efficiency of the
presented method in comparisons with the finite
elements method.

2. Receptance and SDTR of a Uniform
Timoshenko Beam

2.1 Receptance

Receptance is one of dynamic influence coeffic-
ients, and defined as a ratio of a steady state re-
sponse to a harmonic excitation force. In the co-
ordinate system of a uniformm Timoshenko beam
element as shown in Fig.1, four kinds of receptan-
ces can be defined according to combinations of
components of responses and forces,

In case of a translational harmonic excitation
force Fe'' applied at x=#, two kinds of receptan-
ces are defined as
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Fig. 1 Coordinate system of uniform beam subjected
to the point excitation force and moment

ale) =T o )= H) (1)

Similarly, in case of a rotational harmonic exci-
tation moment Me® applied at x=h", two kinds
of receptances are defined as

o lw)= WA(,;C ) s o) = _W](W_XL 2)

In (1) and (2), W(x) and y(x) are translational
and rotational amplitudes of the steady state res-
ponses at a point x, respectively. The relation be-
tween Wi{x) and ¢(x) is,

Y =4H) )

where I'(x) is a shear deformation.

When a translational harmonic excitation force
Fe® is applied at x=#h and a rotational harmonic
excitation mement Me™ is applied at x=h" as
shown in Fig.1, the governing equations of forced
vibration of a uniform Timoshenko beam are gi-
ven as follows[8, 9] :

Fw_ _ 1 8w 136
pA= 5 a2 kAG(1+ﬁ0t )(12 652 { _a%_)
+L 8 —ce

b 2
,d-afg— EIll +« m) —a-gz’— kAGU+p L)

(1 6W l//)+“‘— 5(5 CZ)ezet (4)
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where w(&, 1) and y(¢, 1) are lateral and angular
displacement, pA mass per unit length, of rotary
inertia per unit length, £/ and ¥AG bending and
shear rigidity per unit length, 6(x) Dirac delta
function, «E and BG viscoelastic coefficient due
to internal friction for bending and shear
detormations, and ¢, ¢; and ¢» are nondimensional

parameters defined as

::.Zl‘_, a= c2=-h7- )

From (1} and (2), the receptance of a uniform
Timoshenko beam can be derived by obtaining
the steady state responses of (4) which are de-
scribed as

W(E, =W (e, (&, 1) =Y(&)e’ ©

Assuming

w(é, 0= T W,(9g0)
W& 0= 5 (Dg0

with Timoshenko beam functions{10] W (&) and
Y (&), and time dependent generalized coordin-
ates, ¢/{t), and neglecting cross mode effects of
internal frictions, the steady state responses of
(4) can be obtained in a spectral form, Hence,
the receptances can be neglected, «a£=0= G, the
exact solutions of the steady state responses of
(4) can be obtained with the aids of Laplace tran-
sformation technique, and receptances can be
expressed in closed forms{6].

2.2 SDTR

As shown in Fig. 2, from the steady state res-
ponses at-a point x to a translational harmonic dis-
placement excitations w()=W e and a rota-
tional harmonic angular displacement excitations
6(t) =@ at supporting ends of the beam ele-
ments, four kinds of SDTR conceptually similar
to the receptance are defined as follows ;

1 dw)= —————wr(x’t) 1 (w)= ——-—l//T(x’t)

N wi T w (1)

o) = wrled) )= Wrlx,t) ®
R0 YT T

where wp(x, 1) and yr(x, ¢} are the steady state

responses at a point x in the support motion,

They are the sum of a rigid body motion and rela-

tive elastic motion and can be expressed as follow-
s under the assumption of small 6, ;

wr(x, ) =w, (1) +x6,(6) +w,(x, 1)
Yrlx, D+y(x, 1) )]

where w,(x,t) and y,(x, ) are translational and

rotational components of relative elastic motions.
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Fig. 2 Coordinate system of uniform beam subjected
to the translational and rotational displace-
ment excitations along boundary

The governing equations of such a support mo-
tion can be described as

52W¢. oyl 02we 1 9.
PA— —kAG(1+ﬁW)(7 a2 T
=—pAl 40, + dzw”)
# fdt2 dr?
02'!’e 0 1 62¢e bl
ol P —EI+ “757)(? a—éz—kAG(l + B—a't—)
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1 we oy 40
e AR (10

The SDTR’s defined in (8) can be derived in
spectral forms by using steady state responses of
(10) which can be obtained by the classical modal
analysis in a similar way to derive receptance in
section 2.1. In this case, the relative elastic mo-
tions are expressed as



W&, 0= T W (0,0}

g (11
V& 0= 2 w0 )

In case the internal damping can be neglected,
SDTR can be derived in closed forms[6] using
the exact solutions of (10) and Laplace trans-
formation technique.

3. Receptance and SDTR of a Uniform Bar

3.1 Receptance

As shown in Fig.3, the receptance of a uniform
bar is defined as the ratio of the steady state re-
sponse lx, 1}=W(x)e to a harmonic exci-

tation force Fe applied at x=h i.e.,

a0 = ) 12
EA, oA Feiwt
0 == ﬁrl x. wix, 1)

Fig. 3 Coordinate system of uniform bar subjected to
the point excitation force and the transla-
tional displacement excitation along boundary

The equation of motion for longitudinal vi-
bration of a uniform bar may be expressed as fol-
lows including viscoelastic coefficient, a£';

2 2 .
pA%th—EA(l +a-d) %ﬂ&(x—h)w' (13)

To derive the receptance in spectral forms{6],
the steady state response should be obtained by
the classical modal analysis neglecting coupled
mode effects of internal damping. And it turns
out to be in the form of

wlx, )= 4,() g0 (14)
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where ¢(x) and ¢/(r) are eigenfunctions and time

dependent generalized coordinates,

In case the internal damping is neglegibie, the
receptance can be derived in closed forms{6], us-
ing the exact solution of (13).

3.2 SDTR
The SDTR of a uniform bar is defined as a ratio
of the absolute steady state response wy(x, 1)

=W(x)e* to a harmonic displacement exci-
tation w,(1)=W e applied at supporting part of

the bar, and it can be expressed as

WT(X)

(15)

{w)=

The absolute motion is the sum of the rigid
body motion w,(t) and the relative elastic motion

wlx, 0 ie,
wrlx, ) =w,(t) +w,(x, 1) (16)

The governing equation for the support motion
of a uniform bar may be expressed as follows in-
cluding viscoelastic coefficient, «E ;

Pw, 5 Pw, w,
or EAQTag) o= eAT )

pA
an

The steady state response of (17) is obtained
by the classical modal analysis neglecting coupled
mode effects of internal damping and turns out to
be in the form of

wix. 0= E 409q,0) | (8)

where ¢,.(x) and ¢,/(x) are eigenfunctions and
time dependent generalized coordinates. Then,
the SDTR can be derived in spectral forms[6].

In case the internal damping is neglegible, the
SDTR in cosed forms{6] can be derived using the
exact solution of (17).
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4. Vibration Characteristics of Framed Structur-
es with Various Attachments

A two-dimensional framed structure having a
spring-mass system is shown in Fig.4 as an exam-
ple. An efficient formulation for obtaining vi-
bration characteristics of the 2-dimensional com-
bined system by synthesizing receptances and /or
SDTR’s of various beam /bar elements and rec-
eptances of the attachments will be described in
this section.

Fig. 4 2-D frame structure having spring-mass
system

For convenience of the formulation, identifi-
cation numbers are designated to each beam /bar
element and connection point, and a local coordi-
nate system(x, y) and a gloabal corrdinate system
(X, Y) will be introduced as shown in Fig.4,

4.1 Receptance and SDTR matrices of a Beam/
Bar Element in a Local Coordinnate System

In a local coordinate system as shown in Fig.5,
the steady state responses Ug®,j=1, 2, 3, at a
point x to the harmonic excitation forces Fe*',
j=1, 2, 3, applied at x=h can be described as fol-
lows ;

U, a;; O 0 2y

Uyt = |0 o ap Fy (19)

Us) o L0 agp aplul{F3)s,

or {U}V = [a]xh{F}h’

where the coupled effects of axial and bending
deformation are neglected, and

U,‘(x) L.
o= ,6,7=1,2,3
F;
U F.
4] \\ : \\_3 . | ! X
\.]U1 -’ F;
X
U, le
h ]
y

Fig. 5 Beam element in local coordinate

In (19), [«l,, is a receptance matrix of a
beam /bar element in a local coordinate system.

In case of harmonic displacement excitations
D,e"”’, Jj=1, 2, 3, applied to boundaries of the fram-
ed structure, amplitudes of steady state respon-
ses at an arbitrary point are given as

Ul 1.'11 O 0 D]_
Upp = |0 15 23 D,
Usfe LO 0 t33) D3 )

or  {U}. =[t{D},

Ulx)
where ;= D i.j=123
/

In (20), [], is a SDTR matrix of a beam /bar el-
ement in a local coordinate system,

In (19) and (20), «;; and 1;; are a receptance
and a SDTR, respectively, of a uniform bar de-
rived in chapter 3 and remained ones are of a uni-
form Timoshenko beam derived in chapter 2,

4.2 Receptance and SDTR matrices of an
Beam/ Bar Element in the Global Coordi -

nate System
The coordinate transformation matrix between



a local and the global coordinate systems shown
in Fig.6 becomes

cos@sing 0
[T]=[—sin6 cos® 0 (21)
0 0 0

y

Fig. 6 Beam element in global coordinate

Hence the relations between U, F; and D, in a
local coordinate system and U. F; and D; in the

global coordinate system are as follows

{w=[rHo}
{F=[THF 22)
{D}=ITVD}

Therefore, the receptance and the SDTR mat-
rices in the global coordinate system can be
obtained as

lo) o, = 1TV el 1T
(o], =717 (<] [T] 23)

4.3 Free Vibration Characteristics of a Framed
Structure

It is assumed that », beam elements are con-
nected at a common node k£ each other and the
opposite node of each element is an isolated node
except the one of an arbitrary element & suppor-
ted rigidly as shwon in Fig.7.

When harmonic excitation forces Fe'',j=1, 2,
3, are applied at x=A, in an arbitrary i-th el-
ement, and harmonic displacement excitations
1_)je,-“,,, Jj =1, 2, 3, are applied at a supported node

of the d-th element, steady state responses at
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Fig. 7 Free body diagram of nK beam elements con-
nected at the common node k

any point can be obtained by synthesizing rec-
eptances and SDTR’s of the elements. Using the
steady state responses, the receptance and SDTR
matrices of the framed structure can be obtained.

In the free body diagram shown in Fig.7, the
displacement {U}{", and the reaction force {F}{’
at the node k of the element / can be introduced.
Now, the relation between displacements and for-
ces al any point in an arbitrary element m can be

expressed using (23) as follows ;

i "[&mq

U fadem ] LR (ntd, )

o :[mwﬁwq R

A [l {2 1 | D (24)

iy z[mumw,}FRW}

@9 | L @, U F

From (24), the displacements at the common
node k can be described as the sum of displace-

ments to reaction forces and external excitation
forces as follows :
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U4 =Bl (Fie+ 1Bl (R 25)
where
oy =T T - .

{Fe=URPT (BPT
R =UD)T (P77

OOy

Ce BT

The reaction forces and the displacements in
(25) should satisfy the equilibrium and compati-
bility conditions as follows ;

s _
 (BP=(0 (26)
P ==

()

- - - Uy @70

To describe the equilibrium condition (26) in a
matrix form, we introduce a constraint matrix
shown below ;

[Cl, = : (28)

—[1]3"[113 * * * ‘[1]3
where

100
U= [0 1 0]

001

Then, the eqilibrium condition (26) can be
expressed as

{Fr=[C), (Fk 29
where

e ERT

PR=URPT (RPT -

The compatibility condition (27) can be also
expressed as

[T Ur={0} (30)

Substituting (29) and (30) into (25), gives the
following equation ;

O} =[CHT Bl [Ch (BR+ICHT (B, (R} (3D

Hence, by substituting (29) into (31), the reac-
tion forces at the node k& of each element in the
free body diagram can be obtained ;

(F}=—[CL(CH Bl [CL)LICKE By (R} (32)

(Bl {R} can be devided into two parts accor-
ding to the excitation types ;

[Blir (R} =By (D} + Bl {F} (33)
Then (32) becomes

{B=-[C), (c} BlulCl) L ICIT (18D}
+(Bl; (F) (39)

Therefore, from (24) and (34), the receptance
and the SDTR matrices of the combined system
shown in Fig.7 can be derived. That is, the
amplitudes of steady state responses at a point x
in the element m to the harmonic excitation for-
ces applied to x=4 in the element i are obtained
by substitution of (34) into (24), and the rec-
eptance matrix [y]%” can be calculated by

Gy ) (4] Sfor m#i
P e for m=i (35)

where [4]f is a matrix composed of the elements
corresponding to the element m in (—[C], ((CIT
Bl [Cl)LICE [Bl). Also, the amplitudes
of steady state responses at any point x of the el-
ement m to the hamonic displacement excitations



applied to the supported node of the element d
are obtained by substitution of (34) into (24), and
a SDTR matrix [3l? can be calculated by

o falp) (419 for m#d
= lal [A)y) + [7)lm) for m=i (36)

where [4]y” is a matrix composed of the ele-
ments corresponding to the element m in —[C],
(ICT 1Bl [CLYLICH [Blia).

From now on, let us consider a generalized case
which has the multiple common nodes, It is sup-
posed that there are totally N nodes in the struc-
ture which consist of N, common nodes and N,
isolated nodes, that is, N=N,+N,. When we im-

agine the free body diagram of the framed struc-

ture as shown in Fig.7, the reaction forces and dis-

placements at the common nodes of each element
can be defined. Constructing the relation between
the displacements and forces in a similar way of
(24), using receptances and SDTR’s of the ele-
ments and rearranging the ones for the common
nodes (25), the following equations can be obtain-
ed ;

{U}, =Bl (F), + B4R} 37
where

W, i

{U}C= * s {0}Lk=ﬁ : )
(@, LV
) (B

{i}c =1 - , {F}Lk = N s
#, | L {i}f’;ﬁ

\
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and L,i=1,2,--,N,, are nodal numbers of the
common nodes, E; the number of beam elements
connected to an arbitrary common node L, K,
Jj=1, 2, E, the element numbers of the above
elements,

The reaction forces and displacements defined
at each common node should satisfy equilibrium
(26) and compatibility conditions (27). If the con-
ditions for all common nodes are considered, the
constraint matrix [Cl; for the global system can

be written as

Cly O

¢l = . (38)
(Cly,

where [C], is a constraint matrix for a common

node k as given in (28).
Then the equilibriun and compatiblity cendi-
tions can be decribed as

(R, =[Cl; [AR
{03, =[C)T [UIR (39)

Substituting (39) into (37), the equation

10y =[C% (B, [Clg {FR+ICIE (Bl ARYG (40)

can be obtained, and the unknown reaction forces
can be calculated by

{Fl.= = [Cl(C)[BlICle) [CIEIBIARYS (41)

Therefore, the receptance and SDTR of the
framed structure can be derived in a similar way
of (35) and (36). Also, a latent root problem for
the free vibration is derived from (40).

That is, omitting the excitation term,

{0 =ICI% (B, [Cl; (PR (42)
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is obtainable and from which a characteristic
equation can be obtained as

det ((CYE, 1B, [Clg) =0 (43)

When the r-th latent vector {F}X” of (42) wit-
hout damping is substituted into (39), the r-th

mode shape of the framed structure can be calcul-

ated using the relation shown in (24) for each el-

ement,

4.4 Framed Structure having Attachments
In the formulation for calculating vibration

characteristics of a framed structure having attac-

hments, only damped spring-mass systems are
considered as attachments because a spring-mass
system, a concentrated mass or a support spring
can be reduced by numerical control of paramet-
ers.

If an attached subsystem is composed of three
components of damped spring-mass sysiems as
shown in Fig.9, a direct receptance matrix of a
subsystem at the attached point may be de-
scribed as

By 0 0
Bl= 10 Bz O (44)
0 0 By

where a receptance §; of a damped spring-mass
system as shown in Fig.8 is given as[5]

k;+ joc —ma?

i

=V —1, i=1,2,3, (45
miw®e, + joxi ) / l

Also, a direct receptance matrix of the at-
tached subsystem at mass points can be given as

ﬁol 0 0
[ﬂo]z 0 ﬁﬂZ 0 (46)
0 0 ﬁoS
where
Bo= s i=1,2,3

r Fye™

——' Xze/wt
m .

k ¢

i X

e

Fig. 8 Coordinate system of damped spring-mass
system

It is supposed that N subsystems be attached
at points P,, k=1, 2, ---, N, on the framed struc-

ture as shown in Fig.9(a), and excitation forces
{F2}e and displacement excitations (Rl be ap-
plied at an arbitrary point Q of the structure and
supporting boundaries, respectively, When the
total system is depicted as a free body diagram,
the reaction forces and displacements can be de-
fined as shown in Fig.9(b). In the description of
displacements and forces in Fig.9(b), a time fac-

tor €' is omitted as a matter of convenience.

& . & &

P

&
2—D Frame Structure

(a)
(a) Block diagram of the composite system

w g @

oo | 18,

=}I'I‘l | {BPI (;’Ml (;M. T (X}p-.vl(f}m

Py Py
2—D Frame Structure

(b)
(b) Free body diagram of the composite system

Fig. 9 Block diagram of 2-D frame structure having
damped spring-mass systems



The amplitudes of steady state responses at
any point can be described as follows using rec-
eptances and SDTR’s of the framed structure and
attached subsystems ;

at an arbitrary point P of the framed structure

— - — — — N o —
), =lylpgiF, +inlp (R, 2 Wlep, 1B, (48)
at an attached point P tk=1, 2, - ,N)

— - — - — N _
{X}pk = [ylka{F}e + lﬂ]p‘ {R}P +]'§1 [}’]ka {F}Pj

{}}pk=[ﬂlkk{;‘}pk‘ (49)
at a mass point of the k-th subsystem
Xy, =181 (R, (k=1,2-N) (50)

The reaction forces and displacements should
satisfy the following equilibrium and compati-
bility conditions at attached points

R, =R, =10}

o (k=1,2, N (51)

0, =, - (52)

From (49}, (51) and (52), the simultaneous equa-
tions from which the unknown reaction forces
{Flp, k=1, 2,--- N, can be obtained are given in a

matrix form as follows

(4)(Ft, = — BUF}, —[CHR), (53)
where
{I?}C=[{?}J{,1- C AR AL

Then, the reaction forces can be obtained as

(F, = ~LABIF}, +ICHR},) (54)

3

Hence, the amplitudes of steady state respon-
ses can be calculated by substituting (54) into
(48), (49) and (50) as follows ;
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{:\;}p = ([‘Y]pQ ~ (D4}~ I{B}{F[
+({ylp—(DIA]"UCH
X, =ENA]I"BUF:, + (EN A" MCHR)

>

(55)

¢

where
[D} [[?]PPI * [?]‘PPA [?]PP’V]
1B,)1 O y
E} = . ,
[/),(:}N J
K=l - - il -l

Therefore, the receptance and SDTR of the
total system can be derived from (55) according to
their definitions. And a latent root problem for
the free vibration analysis of the total system can
be obtained from (53). That is, omitting the exci-
tation term,

[4}F1, =10} (56)

1s obtainable. And from the characteristic equa-
tion det([A])==0 of (56), the r-th latent root is
obtainable and can be expressed as

.= —0,+julf, j=\/i—f, r=12,- + - (57)

where o, and wf’ are positive real values. Using
(57) under the assumption of neglecting cross
mode effects of damping, the r-th modal damping
ratio {, of the framed structure can be estimated

by

£ (58)
Vol + wf,’)z

And, the r-th mode shapes of the total system
can be obtained by substituting the r-th latent
vector {FY of (56) (excluding damping) into
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(48), (49) and (50) (excluding external excita-
tions). That is,

X1 =[DpUF
(X9 = —[EWFY (59)

where [D), [E] and {X_}) are same as those in(55).

4.5 Dynamic Responses of Frame Structure having
Attachments

Dynamic responses of the combined system can
be efficiently calculated by using the global rec-
eptance or SDTR matrices obtained by synthesiz-
ing the receptances and /or SDTR’s of beam /bar
elements and attachments,

When excitation forces {Fige™' are applied at a
point Q of the framed structure, the steady state
responses at an arbitrary point are directly calcu-

lated by using the global receptance matrix [;]PQ:

Xip= pQ{i’}Q (60

In case displacement excitations (Rie! along
supporting boundaries of the system, the steady
state responses can be calculated by using SDTR
matrix []p

{(Xip=~[nl,R} (61)

The transient responses at a point P to arbi-
trary excitations can be obtained from the global
receptance or SDTR matrix by application of
Fourier transformation method. Then, the transi-
ent response to arbitrary excitation forces {;(t)}Q

applied at a point Q is

x0hp= 7 PpglFlaioe do (62)

and that to arbitrary displacement excitation
{r(t)} applied to suppoting boundaries is

Wip=g [ IIAR@IE doo ©3)

where {Fw)iq and (R(w)} are Fourier transforma-

tions of {f(t)}Q and {r(t)}, respectively.

5. Numerical Examples and Discussions

For the verification of the present method, nu-
merical investigations are carried out for a fram-
ed structure having a damped spring-mass sys-
tem, as shown in Fig.10. The framed structure is
made of mild steel whose material properties are
E=21x101 N/m?, p=7.85X10° kg/m® and Pois-
son’s ratio 0.3. The sectional shapes of the el-
ement 1 and 2 are a rectangular section of width
X depth of 2 cmx3 em and that of the element 3
is 2 cmx6 cm. The structural damping is neglec-
ted. The magnitude of mass of a damped spring-
mass system is 1/10 of that of the framed struc-
ture, and its spring constant is determined so
that the natural frequency of the spring-mass
system may coincide to the fundamental natural
frequency of the framed structure.

100

ey
Fe

® @

200

1 1
TITT7T77 7777777777777 7777777/

Fig. 10 2-D frame structure having a damped spr-
ing-mass system subjected to point exci-
tation or base excitation

Natural frequencies and mode shapes of the
framed structure having a spring-mass system
are calculated by the formulations described in
sections 4.3 and 4.4. The calculated results are
compared with those by the finite element met-



hod in Table 1 and Fig.11. The both result are in
good agreements,

Table 1 Natural frequencies of the frame structure
having a spring-mass system : refer to Fig.

i0
Model Frame structure
N Frame structure | having a spring-mass
M\\ system
Method
RM* |FEM. R.M. F.EM.
Order
1 4,30 4.30 4.30 4.30
2 17.05 17.05 12.90 12.90
3 38.69 38.61 22.40 22.40
4 39.14 39.10 38.69 38.61
5 65.42 65.43 39.28 39.24

* R.M. : the receptance method

(e) Mode 5 (39.28 Hz)

WJWVI’”M’WW
(d) Mode 4 (38.69 Hz)

(d) Mode 4 (39.14 Hz)

b UG L L L i 4 b L Ll
(c) Mode 3 (38.69 Hz) (c) Mode 3 (22.40 Hz)

W’J’IMVWWWW Vi e

(b) Mode 2 (17.05 Hz)  {b) Mode 2 (12.90 Hz)

l T

77777777

(a) Mode 1 (4.30 Hz) (a) Mode 1 (4.30 Hz)

(A) Base system (B) With a damped spring-mass system

Fig. 11 Mode shapes of 2-D frame structure having
a spring-mass system : receptance method
coincides with FEM
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Also, calculations of steady state responses to
harmonic excitations are carried out for both cas-
es of a framed structure with and without a dam-
ped spring-mass system, The damping ratio of
the attached subsystem is assumed to be 0.1 and
two types of excitations are considered as shown
in Fig.10 : a harmonic excitation force applied to
a point on the element 2 and harmonic displace-
ment excitation applied to supporting boundaries.
In both types of excitations, the magnitudes of
excitations are taken as unity, F,=D,=1. The
calculated results of steady state responses by
the receptance method are plotted in Fig.12 and
Fig.13. For the purpose of comparison, calcu-
lations by the finite element method are also car-
ried out for the case of the excitation force and
its results are also plotted in Fig.12. From the fig-
ure, it can be seen that they are in good agree-

ments,
0.5 L“
04}
—_
g . Damped Spring—
5 03f MossSys Attached f o:Results by F.EM.
E 02
= oz}
E Frame Only
01f
0.0 A . ! AL
0 10 20 0 40
Frequency(Hz)

Fig. 12 Steady-state response at the midpoint of
beam 2(Excitation : F=1Kgf, Do=0. in Fig. 10)

100}~

s
_
E 601 Darnped Spring —
§ Mass Sys. Attached
-1
B, 40P~
&

20 poer

i} - .

Frequencx{Hz)
Fig. 13 Steady-state response at the midpoint of
beam 2(Excitation : F=0., Do=1cm in Fig. 10)
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6. Conclusions

For an efficient vibration analysis of a framed
structure having attachments such as damped
spring-mass systems, support springs and /or con-
centrated masses, analytical approaches based on
the receptance method are presented. And, to
verify accuracy and computational efficiency of
the presented method, some numerical investiga-
tions are carried out. Major conclusions are as fol-
lows :

(1) Receptances of a uniform Timoshenko
beam and a bar are derived in spectral and
closed forms, Also, the SDTR (support dis-
placement transfer ratio) of the Timoshen-
ko beam /bar is defined with similar concep-
ts to the receptance and derived in spectral
and closed forms.

~—

(2) The vibration characteristics of the framed
structure having attachments can be calcul-
ated by synthesizing receptances of the
beam /bar elements and the attachments in
good accuracy with higher computational
efficiency. In the process of the synthesis,
modal damping properties of the global sys-
tem can be estimated appropriately.

(3) The dynamic responses of the framed struc-
ture having attachments to both point exci-
tation forces and displacement exitations
along supporting boundaries can be easily
calculated in good accuracy by using the
receptance or SDTR of the global system
obtained by synthesizing receptances
and /or SDTR’s of beam /bar elements and
receptances of the attachments,
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