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Abstract

By using multiple-scale expansion techniques, the Mach reflection of sinusoidally-
modulated nonlinear Stokes waves by a stationary thin wedge has been studied within the
framework of potential theory. It is shown that the evolution of diffracted wave amplitude
can be described by the Zakharov equation to the leading order and that it reduces to the
cubic Schrodinger equation with an additional linear term in the case of stable modulations.

Computations are made for the cubic Schrodinger equation for different values of nonlinear

and dispersion parameters. Numerical results reflect the experimental findings in terms of

the amplitude and width of generated stem waves. Based on the computations it is
concluded that the nonlinearity dominates the wave field, while the dispersion does not sig-

nificantly affect the wave evolution.

1. Introduction

It has long been observed in tank experiments
that stem waves are generated in addition to
reflected waves when solitary waves are incident
to a vertical wall with an angle less than 45°(1,
2]. The crestline of the stem waves is almost per-
pendicular to the wall and the junction point be-
tween the stem and reflected waves are slightly
apart from the wall. Particularly when the inci-
dent angle is less than 20°, no reflected waves ap-
pear leaving only the stem waves. Wiegel [3]
claimed that the configuration is very similar to

the Mach reflection of shock waves and hence
coined the name, Nielsen [1], Berger & Kohlhase
[5] observed the same phenomena in water of fi-
nite depth.

From these experiments, the stem waves are
characterized as follows : The height of the stem
waves first increases and then gradually
decreases in the downstream. Its relative magni-
tude is proportional to the incident angle and
inversely proportional to the incident wave ampli-
tude. The stem width is wider for larger waves,
and narrower for larger incident angle and also
for greater waterdepth.
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Miles [6] clarified that the basic mechanism of
the March reflection is the long-scale evolution
of nonlinear waves. The long scale hereby is
meant as the relative scale in comparison with
those of carrier waves, It is well known, how-
ever, that nonlinear wave trains are likely to be
unstable, when they are subject to any small side
-band disturbances [7]. Therefore it is natural to
raise the question about the stability of the Mach
reflection, which is a very difficult task.

As a first step towards the task, it is aimed in
this paper to investigate the nonlinear diffraction
of stable wave trains,

2. Description of the Problem

Let us consider nonlinear waves incident to a
long wedge, of which the angle is 2a. The fre-
quency and the wave number of carrier waves are
denoted by w and k, respectively and its modu-
lation frequency by Q. Under the wusual
assumptions of potential flow, a velocity potential
is introduced to describe the flow field in a right-
handed Cartesian coordinate system as depicted
in Fig.1. The problem may be formulated below :

A, QK

-

fFig. 1 Definition sketch

VZa=0 0Lz, (1)
O, =+, 0+, 2=, )
®+1/2|V ®12+gz=0 z={, (3)
o, =0 y=zyg(x), (4)
®,—0 zZ—~—o©, __ (5)

O=q! x<0, (6)

where g corresponds to the gravitational acceler-
ation, {(x, y, t) to the free surface,_n’ to unit nor-
mal vector directed out of the fluid region, yB to

the surface equation of the wedge and @' to the
incident wave potential.

This boundary-value problem is too compli-
cated to yiéld an exact solution, For an approxi-
mate solution, we need some simplifications. First
of all, the wedge 1s assumed to be so thin that
waves are diffracted only in forward direction.
Thus the boundary condition, Eq.(6), can be jus-
tified. The wave steepness is as small as the thin-
ness of the wedge, i.e.,

kA ,=¢b §=0(1) (7
where A, stands for the typical wave amplitude.

Furthermore, the modulation frequency and the
associated wave number are small compared to
their counterparts of carrier waves in the follow-
ing way :

Q/2w=ev, v=0(1) : K /2k=¢y, u=0(1) (8)

The amplitude dispersion of the Stokes waves is
a typical nonlinear effect, of which the order of
magnitude is 0(&)

o?=gk[1+(kA,)?] (9

It implies that the nonlinear dispersion becomes
effective only when the carrier wave travels a
long distance of 0(k3Ao?). Accordingly it is
reasonable to take the dimensions of the wedge.

kL=0(s2) and kB=0(e?!) (10)

where L and B are the length and the beam of
the wedge, respectively. It is of interest to note
that Eq.(10) is nothing but the thin ship assump-
tion, i.e. B /L=0(e). It is recalled that the depth
attenuation of wave motions in deep water is
exponential. Thus the primary picture of the



diffracted waves by a thin ship may be captured
on the free surface, which would not differ sig-
nificantly from the diffraction by a vertical wall
instead of a thin ship. Furthermore only the for-
ward diffraction has been assumed here. Based
on these reasonings, we may conjecture that the
present analysis can be applied for the nonlinear
bow wave diffraction of a thin ship.

3. Evolution of Diffracted Wave Amplitude

Either multiple-scale expansion technique or in-
verse scattering method is employed for nonlinear
wave problems [8, 9]. In our case, it is pertinent
to take the former method because the temporal
and spatial scales of variables involved in the
problem are vastly different. We may classify
them into three groups ; the spatial and the tem-
poral scales associated with carrier waves (x, t),
those associated with modulation (K'1, Q1) and
the length scale of the wedge(l.). The orders of
the relative magnitudes of these variables are
0(1), 0(e’l), 0(e2), respectively. To deal with
these variables of different scales, the long-scale
variables are introduced.

Xy =eX, €%, Y, =&, t;=et, (1)

The velocity potential and the free surface are
first expanded asymptotically with respect to ¢
and then further expanded into Fourier series
with respect to t.

© n
O(xy,z,t)=3 Y ™ gn(x, X, v t1)
n=1 m=-n
(12)
© n )
(xy,)=% X €™ nun(xy, X, ty) (13)
n=} m==-n

where @(=kx—#6t) is the phase function of car-
rier waves,
It is understood that only the real parts are to
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be taken. Since the surface elevation must be
real, the following relations hold

¢n - m:¢nm‘» ’1n - m:'lnm,v

where * denotes the complex conjugate.
Recalling the modulation and the amplitude dis-
persion, the incident wave potential is given by

O (x,z,t)=(—ig /w) explkz+ip) A{xy, X, t;)
(14)

If sinusoidal modulation is assumed, the ampli-
tude function takes the form

A=A, exp i(Kx—t) —k* Ao*x) (15)
=A, exp 1(2ukx; —2vwkt, — 5%k x,)

Since the solution procedure in general is given in
the comprehensive book of Mei {9, pp.607—618],
detailed derivations are omitted here. The first-
order solution is well known and trivial sofar. The
second-order solution requires the conservation of
wave action

aA /ati+C, aA /ax,=0 (Cy=group velocity)
(16)

If Eq.(15) is put into it, we obtain 2v=py. The
body surface is expressed in terms of the long-
scale variable

then the kinematic boundary condition turns out
to be

a0 /oy, =[(2/ax+e a/ax,) ®] aYg /9%, (18)

where Eq.(10) has been used.
It is clear that the linear solution must be

O=(—ig/w) explkz+ip) A(x,, x5 vy, t,) (19)
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By substituting it into Eq.(18) and collecting
terms of lending order, we have

2A /ay,=ikA oYy /2%, V1=Yg(Xy) (20)

The evolution of the amplitude is obtained at the
next order,

C, 2A /oxy V100 /8k2(2%A /ax3—20°A / ay})
+(i/2)wk2| A2 A=0 (21)

This equation was derived for the first time by
Zakharov [10]. It is to note that the general form
of the solution contains an integral constant
which physically represents a current-like flow.
In the above equation, this term has been simply
discarded, because the current is small in deep
water,

It is more convenient to introduce the following
nondimensional variables,

A=A /Ao, X,=kx,, Xo=kx,, Y=ky,, T=ont,
(22)

In terms of these variables, Eq.(21) is rewritten.

aA /92X, +(i /4) (A /2%~ 28°A /2Y?)
+is2|Al2 A=0 (23)

If it can be assumed that the diffracted waves
are also modulated sinusoidally, then the ampli-
tude function of the diffracted waves can be sup-
posed to be

Alxy, X5, vy, ) =A(Ry, v1) exp 1(2ukx, —powt,)
(24)

By substituting it into Eq.(23), we finally obtain
the cubic Schrodinger equation,

oA /93Xy~ (i /2) A /3Y2Hi(— 12462 A|DA=0
(25)

where the amplitude is normalized by Ao.

The first term represents the evolution of the
wave amplitude with respect to the longitudinal
distance, X,, and the second term corresponds to

its lateral diffusion, while the third term contains
both the dispersion and the nonlinearity. If the
incident waves are uniform, the last term reflects
only the nonlinearity [11]. Eq.(25) may be
interpreted as the equation of motion for an oscil-
lator of two-degrees of freedom oscillator with a
nonlinear spring, which belongs to a class of
Duffing’s equations [12].

4. Numerical Result and Discussion

Based on the instability theory of Benjamin &
Feir [7], Longuet-Higgins [13] investigated the
instability problem by numerical method. In con-
trast to the previous result, he found that the
borderline between stable and unstable zones is
not a simple straightline but a curve on the kAo
(=e8) —K /2k(=eu) plane. He also found that
Stokes waves are always unstable at &6=0.41 for
all u. However, as clearly stated at the beginning
of the paper, we restrict our attention her only to
stable conditions, Our primary concern is the ef-
fect of the wedge angle and the nonlinearity.

In the present computations, the Crank-Nichol-
son algorithm has been utilized for X derivatives
and the centered difference is taken for Y derivat-
ives. To limit the dimension of the computation
domian, the following boundary condition is impos
ed at the boundary, where Y >> 1,

2A /2Y=0, A=exp i(2uX,—uT—-08°X,)  (26)
The wedge is expressed by
y=x tan g, tan a=e¢ 27)

and accordingly the kinematic body boundary
condition is simplified to



WA /Y =iA  Y=X, (28)

Specifically the computations are made for the
two wedges, of which the half angles are 17,55
{£2=0.1) and 24.09°(¢£=0.2). Three wave steepnes-
ses are considered, 1.e. kAo==0.05, 0.1, 0.3. The
corresponding values of § are 0.1582, 0.3163,
0.9489 for e=17.55"(#£==0.1)and 01118, 0.2236,
0.6708 for a=24.09°(£2==0.2). Two modulations are
taken, i.e. K /2k==0.1 and 0.3. According to the
result of Longuet-Higgins{13], these modulations
are stable except the cases of K /2k=0,1 for
kAo=0.1 and 0.3, The nondimensional length of
one modulation is X;=n /2y and it takes the non-
dimensional time of To=n /u for carrier waves to
propagate over this distance.

Fig.2 shows the variation of diffracted wave
amplitude along the wedge for kAo=0.1 and
K /2k==0.1. The solid line is designated by £=0.1
corresponds to the wedge of half angle a=17.55°,
while the dotted line designated by &=0.2 to the
wedge of «=24.09°. The ordinate is the
normalized wave amplitude and the abscissa is
the nondimensional long-scale length X, It is
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2 Variation of wave amplitude along the wedge
for kAo =0.1 and K/ 2k=0.1
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Fig. 3 Variation of wave amplitude along the wedge
for different wave slopes with £=0.1 and
K/ 2k=0.1

ohserved in the figure that the amplitude of
diffracted waves starts to increase monotonically
and then decreases very slowly, The magnitude is
slightly greater for the wider wedge,

Variations of wave amplitude due to the inci-
dent wave steepness are illustrated in Fig.3, Here
the half angle is a==17.55" and the modulation
ratio is K /2k=0.1. The relative wave amplitude
decreases considerably for the steepest waves,
kAo=0.3,

Fig.4 shows the snapshots of wave field for
kAo=0.3 and K /2k=0.1, in which the ordinate
represents the lateral coordinate Y. Attention
should be paid to the different scales of the lat-
eral length Y(=key} from that of the horizontal
length X,{=ke’x). The numbers denote the

dimensionless wave amplitude. The overall
features for two different wedge angles are simi-
lar each other, Stem waves are ocbserved near the
wedge and its width increases almost linearly
downstream. The stem angle is measured to be 7.2°
for the narrower wedge and 7.0° for the wider
wedge, Although the difference is small, its trend
is in the direction to support the experiments,
Lastly the lateral vanations of wave amplitude
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Fig. 4 Contour of diffracted waves along the wedge

for kAo =0.3 and K/ 2k=0.1
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Fig. 5 Lateral variation of wave ampitude at X2=8

different moduiation ratios with &=0.1 and
K/ 2k=0.3



at the location of X,=8.0 are depicted in Fig.5.

The half wedge angle is a=17.55° and the wave
steepnesses are (a) kAo=0.05, (b) kAo=0.1 and
(c) kAo=0.3. The solid and dotted lines rep-
resent the modulation ratios for K /2k=0.1 and
0.3 respectively. Stem waves are observed only for
the case of steep waves, (c) kAo=0.3. In the
case of (a) kAo=0.05, the second crest from the
wall has almost the same magnitude as that at
the wall. Generally speaking it is hard to
recognize any differences between two cases in
the figures, In implies that the wave evolution is
not significantly affected by the dipsersion.

5. Conclusions

In this paper, a study has been made on the
diffraction of sinusoidally-modulated nonlinear
waves by using the multiple expansion method.
Under the assumption of forward diffractions, it
is shown that the evolution of the diffracted
wave amplitude can be described by the
Zahkarov equation, which further reduces to the
cubic Schrodinger equation when the envelope of
carrier waves is modulated sinusoidally.

Numerical results support the experimental
findings in general. The cubic Schrodinger
equation contains the dispersion term, but it is
numerically confirmed that its effect is negligibly
small. Meanwhile the nonlinearity affects the
wave evolution significantly,

This research was financially supported by
Korea Science and Engineering Foundation, to
which the authors would like to gratitude sin-
cerely.

References

[ 11 Perroud, P .H. 1957 The solitary wave reflec-
tion along a straight vertical wall at oblique
incidence. Univ. California, Berkeley, 1ER
Tech. Report 99—3.

51

[ 27 Chen, T.C. 1961 Experimental study on the
solitary wave reflection along a straight
sloped wall at oblique angle of incidence.

U. S.
Beach Erosion Board Tech. Memo. 124.

[ 3] Wiegel, R.L. 1964 Oceanographical Engineer-
ing. Prentice-Hall,

[4] Nielsen, A.H. 1962 Diffraction of periodic
waves along a vertical breakwater for small
angles of incidence. Univ. California,
Berkeley IER Tech. Report 99—3.

[ 5] Berger, U. and Kohlhase, S. 1976 Mach re-
flection as a diffraction problem. Proc.15th
Conf. Coastal Eng.

[6] Miles, J.W. 1977 Diffraction of solitary
waves. Z. angew, Math. and Physik Vol.28,
pp.889—902,

[ 7] Benjamin, T.B. and Feir, J.E. 1967 The dis-
integration of wave trains on deep water.
Part T Theory. JFM Vol.27, pp.417 —430.

[8] Yuen, H.C. and Lake, B.M. 1982 Nonlinear
dynamics of deep-water gravity waves.
Advances in Appl. Mech. Vol.22, pp.
67 —229.

[9] Mei, C.C. 1983 The Applied Dynamics of
Ocean Surface Waves, Wiley-Interscience.

[10] Zakharov, V.E. 1968 Stability of periodic
waves of finite amplitude on the surface of a
deep fluid. J. Appl. Mech. Tech. Phys. Vol.
2, pp.190—194.

[11] Yue, D.K.P. and Mei, C.C. 1980 Forward dif-
fraction of Stokes waves by a thin wedge.
JEM Vol.99, pp.33—52.

[12] Thompson, J.M.T. and Stewart, H.B. 1986
Nonlinear Dynamics and Chaos. John Wiley
and Sons,

[13] Longuet-Higgins, M.S. 1978 The instability
of steep gravity waves of finite amplitude in
deep water 1. Superharmonics, 1.
Subharmonics, Proc. Royal Soc. London A.
360.



