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ABSTRACT

This paper deals with the decentralized robust adaptive controller design for large-scale
interconnected systems. We consider an arbitrary interconnection of subsystems with unkown
parameters and bounded disturbances, When the disturbance and uncertain interconnections are
present, the stability of the controlled large-scale system is ensured if there exists a positive defi:
nite M-matrix which is related to the bound of the interconnections. The possible bound of the
interconnections is assumed to be known 7%, order polynomials for the decentralized adaptive con-
troller. A modified adaptive law i1s proposed guaranteeing the existence of a region of attraction
from which all signals converge to a residual set /),, which contains the equilibrium,
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1. INTRODUCTION nected. The overall system may be considered to
be a set of small interconnected subsystems, For
We have attempted to address the problem of such systems, with possibly many interconnected
controlling large-scale systems which are intercon- components, the dynamics of each subsystem
] - may be individually ~etermined but the intercon-
PHERB R . . .
Dept. of Electrical Eng.. Kwang Woon Univ. nection terms are harder to identify. A drawback
af SCHEHE 193 138 of most centralized adaptive schemes is that they
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are concerned with the dynamic structure of the
processes they are controlling because they re-
quire parametrization of the dynamics of the sys-
tem in linear paramatric form. They cannot hand-
le structural changes in the system. Qur approach
i1s to decouple complex systems from control by
using appropriate simplified linear reference mo-
dels. Traces generated by these models are track-
ed using decentralized controllers which must be ro-
bust so that they perform well under lack of para-
meteric uncertainties and variable dynamics. The
fundamental uncertainties encountered in decen-
tralized controller design are the strength of the
interconnections among the subsystems. Most of
the previous works in decentralized control of la-
rge-scale systems can be found in [1][3]{7][8]
and their works are based on the assumptions
that the interconnections are either bounded by
known or unknown P, order polynomials in states
[2). The standard M-matrix conditions have been
used by Ioannou{5] and Ossman[9] for decentral-
ized adaptive controller designs. The stability of
the controlled large-scale sysetm is ensured if
there exists a positive definite M-matrix which is
related to the bound of the interconnections. In
this paper, we investigate robust adaptive con-
troller design when the strength of the intercon-
nections among for subsystems is bounded by a
known polynomial in states. We consider the de-
centralized adaptive control for the interconne-
cted subsystems with unknown parameters, non-
linearity and bounded disturbances. The stability
of the overall adaptive decentralized controller is
analyzed through the Lyapunov direct method
and Kalman-Yacubovich lemmal3]. The robust
adaptive decentralized controller is proposed to
drive the uncertain subsystems to track the local
reference models [6](12]{13] as closely as poss-
ible with improving a steady state deviation,

[[. INTERCONNECTED LINEAR SYSTEMS

We consider a large-scale systems S which is
composed of N interconnected linear subsystems

Si. Each subsystems S; of control area may be re-
presented as

N
S;: 5(,'=A,'x,'+b,'U,'+Di+?: Sii(t, x;) (1)

Y :thr (2)

where x;(¢) € R™ is the state vector, U,()ER is
the control input, A; € R™ X R" is the unknown con-
stant matrix, and b; € R™ is the unknown constant
vector, The unknown function f;;(¢, x;) € R", where

N
n=7Y. mn,is the strength of interconnections from

7

other subsystems. It should be noted that the in-
terconnections are assumed to satisfy the follow-
ing formular,

I it x| <aij lx;ll (3)

where a;; describes the unknown arbitrary posi-
tive definite constant. The overall systems S can
be written in a compact form,

SIXN=AN+BU+D+F(t, x) (4)

Y =X (5)

where X =[ X7, XT, ., XT) are states, D=1[ D7,
DT, ..., Dy ] are disturbances and F(¢, x) is inter-
connections of subsystems, The constant block
matrices 1€ R" X R” and BE R" X R\ are represen-
ted by A=diagld\, ... Av], B=diag(h. ..., Bv].
We now investigate the formular of the problem.
The objective is to track a reference tragectory x
generated by a linear reference model M/, i€ N

M imz‘ = A i X +b"‘ll Y (6)
Voni :—‘(‘,1,;,- Xomi (7)

where A, is a stable constant matrix. Therefore,
1t satisfies the Lyapunov matrix equation. i.e,, for
any positive definite matrix ();, there exists a un-
ique positive matrix /% such that
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AL P+ Pidpi = —Q; (8)

The overall reference model M for the systems
can also be written in a compact form

M X = A Xon+ Bmr (9)

Y =CnXm (10)

where »€ R is the reference input vector and A,
=diag( Am, ..., Amv), Bm=diag| Bmi ., .... Bmyv].
when there is no disturbances, and non-intercon-
nections, i.e., in the case of =0 and I'(¢, x) =0,
the above formulation describes the single input
single output adaptive control systems. But the
term F (£, x) has nonlinearity for interconnections,

II. DECENTRALIZED ADAPTIVE CONTROLLER

We consider the transfer function of the plant
1S given by

Ni(s)
Di(s)

Wyls)=ho(SI~A4,) " by=K, (11)
where Ni(s) is the »;,—1 order monic Hurwitz poly-
nomials, and D;(s) is the »; order monic polynomi-
als. The reference model is assumed to be order n

with a strictly positive real transfer function

Zm(S)
Rnls)

Wi (8) = CTAST—Am) "' by = Ky (12)
where Z,(s) and R.(s) are monic Hurwitz poly-
nomals of degree n—1 and n respectively and K,
is positive.

The controller structure 1s completely describ-
ed by the differential equation,

Y= AT + g (13)
wt =cry iy (14)
V=AY gy (15)
W =dty, +dri? (16)
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Vialr®), VI, Yo0), VT ] 17)
0; 2 | Kilt), CT), d5 (), dT (1) )" (18)
Uy = 0" () W(t) (19)

where A is an asymptotically stable matrix and det
[ SI—A]=a(s). It follows that when the control
parameters K(t), 61(2), 0o(¢) and 6.(¢) assume con-
stant values K., #., s and 6., respectively, the tr-
ansfer functions of the feedforward and the feed-
back controllers are respectively

A(s) D(s)

i) —c(s 2T (20)

and overall transfer function of the plant together
with the controller can be expressed as

Ke Kp Ni(S) A(s)

Wals) = [A(8) = () 1Dis) =K, Nils) D(s)

(21)

where A(s) is a monic polynomial of degree n—1
and ('(s) and D(s) are polynomials of degree n—2
and n—2 respectively. The parameter vector 6,
determines the coefficient of ('(s) while 8, and 6.
together determine those of D(s). Fig 1. shows
the decentralized adaptive “controller structure
which used in this paper.

[et (*(s) and D*(s) be polynomials in S such
that

Als)—*(s) = Ni(s), Di(s)— K, D*(s) = Ruls) (22)

L *

Fig. 1. The decentralized adaptive controller.
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Futher let A(s) =Z.(s), then scalars K*, 6; and 6}

and 3 exist such that K*= 11‘\': L0 (SI-A) N g
__C*(s) * T . 1 g o D*(s) .
="s) and 65 + 605 (sI—A) " g ETISH choos
ing 6(t) =6* where 6* is defined as

o* 2 [k 01", 65, 03" 1" (23)

The transfer function Wy(s) in Eq.(21) becomes

Ni(s) Zu(s)
Ni(8) I Di(s) —kpD*(s)]

Wols) = km =Wnls) (24)

The overall systém equation describing the plant
together_wfth the controller can be expressed as

-
E? 4 0 0] [ x b
oV =1 0 A0 |V |+l 678 w]
l.),'(Z) g,h‘T O A 'U,‘(Z) 0
(25)
Yo = hi x; (26)

where we define the following parameter errors :

#(t) =Kk(t)—k*, @it) =0:) 6],

o(t) 2 [g(2), T (1), oT(8), eT(t) 1"
then eq(25) can be written as
x = Aix +bei [ k*r + o7 (t) vi ] (27)
where

A+ b o0 RT bi oy b 65"

Adi=| &0hT  A+gbl g6 (28)
b

bi=\|gil, hi=[h,00), x2[«, o7, 0] (29
0

since Wy(s) =W ,.(s) when 0(¢) = 6* it follows that
the reference model can be described by the (3z
—2)" order differential equation

X'mi = Ami Xmi + bmik*7i, Ymi = hTer (30)

Where Xmi= [ X77, 017, 03" 1"

X7 (#), v1{¢) and v3(t) can be considered as sign-
als in the reference model corresponding to x;(¢),
v1{#) and v»(¢) in the overall system.

Therefore, the error equation for the overall
system may be expressed as

& = Ami € + bmi @Tvi + Dei + F; (31)
eoi:h:u e,-=[1, 0, 0, - :I [ (32)

Where €= X —Xmi, €i = ¥i~¥mi,» Dei=[D], 0, 01"

N
Fi=[Y £i7(t %), 0 017
=1

Equation (31) is of dimension 3n—1 while the cor-
responding W,.(s) is order n. The models remain-
ing 2n—1 poles are uncontrollable and/or unobser-
vable but ‘asymptotically stable since N;(s) is Hu-
rwitz,

Ioannou{2] proposed a decentralized adaptive
controller for computing the parameters of each

subsystem :
é,'= —0; I 6; — I ey v (33)
. 501' 1f ” 91' ” > Uoi
where &, = .
0 1f " 01' “ < Hoi

I; is a positive definite matrix of appropriate di-

mension,
IV. DECENTRALIZED ADAPTIVE SYSTEM STABILITY

It is shown that the equilibrium stable (e =0, ¢
=) of Egs (31) and (32) is uniformly stable in
the large and /lim e{t) =0.

Let I'(e;, ¢;) be a Lyapunov function candidate
of the form

o [ —

1'{e, i) == (T Peiei + o7 T; ;) (34)
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From the Kalman-Yacubovich lemma, it is known
that if A/ (S/—4)7'& is strictly positive real, a
matrix P exists such that A/ P+ P4= —qq' —¢L,
Pb=h for some vector q, matrix L=1">( and £ >
0. It is clear that V' (e;, ¢;) = 0. The derivative of
this function (34) using the adaptation law (33) is

Ve;, @) = —% elgigT+el)e <0 (35)

Hance, the equilibrium state (e; =0, ¢; = 0) of Eqs
(31) and (32) is globally stable. Also e€ £2and ¢ is
bounded.,

In eq (35), we consider the asymptotic stable and
convergence to get the following equation.

U= alelPaeit ol 17 o] (36)

1=

where a;= [ a1, as, ..., av ]’ is positive elements
with dimension N. The standard M-matrix can be
written in a form

ai(A;—2gi;) =7

M= o (37)
’ r—Aa; gij + ai; gij) 17

M;; is positive definite matrix which is ensured if
there exists, The derivative of eq (36) is

a; L AeiTQiqg‘el & g?[<1 €; + Zel?vlju D
)

i
1=

+ 26? I)z‘i [; - 2(71' (P;r()z } (38)

where A; :% & miun A(L;)
&= ‘ I)m' ‘ &, 1)1' = max k<1)u')
ri=max AI7"),  du=supl PuDylt) |

N
Xoi ::SHD,Y__ &ij H X'm,'(f) H, Xm:min l(‘[)
The local interconnected function [+ 1s satisfied as
N
H 1:1 ‘ < S az'/'(H eiH + }‘ anH) (39)

The derivative of eq {38) can be rewritten
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"< *bnl'—i Llei 12 (Am— by Poy) + ailaoi—bori) l@ill 2] + ko

+3 @l low—oi) ol = ail 16,12~ 1631 ] (40)

where ky=Y — %
v (Do xp)?

N
=

. ayi
), min(—=)]
a; Pei ¥i

b() = min |, min(

In this case, we conclude that the derivative of
eq (36) is adaptively estimated using

(ovi —a:) l@ill* < 60:(80; + 167112

~a;(10:1° = 1671%) < ao: 167 1I° (41)
llv < "‘b()[v+ku
N ) i 2 Y
where k=Y o Lot 0l f"‘“’ +0il8oi+ 167 12)
+ o607 12]

Let us consider a Lyapunov function candidate

() < e b0 +(l~e’b“’)%: L Viz0 (42)
By choosing ¢;(¢) and 6;(¢) are bounded, the re-
sidual finite constants & and g, exist. Therefore,
overall parameter adaptive errors ¢, =1[ o7, oI,
. @71 and tracking errors e;=[eT, e, ..., €} ]
are globally converge to a residual set Dy.
ky
}

where Dy={(gp. &) loll*+lel*<—
by qo

V. AN ILLUSTRATIVE EXAMPLE

We consider power systems of multivariable dy-
namic system consisting of two generators in a
power grid[4]. A power system has to maintain a
constant frequency and, hence two generators con-
nected to it must be in synchronism, For this ex-
ample we specify the control objectives of the over-
all power system ensure system stability and ma-
intain the desired frequency and power balance
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with changing load conditions.

Two respects in adaptive power system control
that have received considerable attentions are (1)
adaptive load-frequency control and (2) adaptive
generator exciter control. In this paper, we inves-
tigate the problem(1) from an MRAC point of view,
In a power system, coherent groups of generat-
ors(called areas) are connected by tie lines. Each
area meets its load changes according to a chara-
cteristic that relates area normal value whenever
changes in frequency occur due to changing load,
while maintaining interchange with other areas wi-
thin prescribed limits. If constant controller para-
meters are used, they are, at best, compromises
between values that give good damping at light
loads and values needed for heavy load conditions,
Hence, for improved performance, the parame-
ters of the controlier must be varied with time,

Defing the state vectors x; = ( f Af:dt Af;, Ax,;,

Ap;)T, output vector y;=Af; and input vector #;
= [ A f; dt, the adaptive law of the interconnected

power system can be described as

é{: —6;I; 8, — I ey; v; (43)
5 = { doi , I 60: 1l > 6yi
© o, 161 < 8:

where Jp; and 0; are design parameters and I} =
I'">0. e, is frequency deviation Af; and Ax,; is
governer speed regulation deviation, and AP; is
generating power deviation. For simulations, we
can be described as the following linear equations
with 8th orders.

5(1 :A[ pal —+- b] l'l + 1)1 + El X2
Ji'g:.42X'2+bgl'g+ng+lf'_’x“ (44)
where state vectors and interconnections as

wi=L[Aafidt af. Axa, APV

wo=[{Afidt Axn. AP

lez‘fAfgdt, X'n:j‘Afldt

The system is in the form of comparing to (1),
we obtain the subsystem matrices as

0 1 0 0
327 0 6 0
A=l 0 -333 333 |°

0 —5208 0 -125

b=[000125]"

Dy=[0 —~0.30 0], D,=([0000]"

E=[032700]"

We choose the stable coefficient matrices as

-1 -01 0
A= —01 -1 =01
00 -01 -1

with I7gxs) Upper triangle nonzero elements
L, =L, =01
LGi+1) = L(,i+1) =0.01
Li,i+2) = L{i,i+2) = 0.01

Disturbance vector D has all zero elements but
D, has the nonzero element so that there is a load
change in area 1. For 8th order interconnected sys-
tem, the simulations are shown in Figs. 2. and 3.

Fig.2 shows the frequency deviation and Fig.3
shows the parameters of decentralized adaptive con-
troller. We observe that the frequency deviation
of two controllers are similiar on the system tran-
sient states and both controlled systems are stab-
le as expected. Now we increase the order of the
one controlled area to 5th order. The simulation
results are shown in Figs, 4 and 5, the frequency
deviation is shown in Fig.4, which is bounded as
we expected. We also see the decentralized adapt-
ive controller parameters track as expected in Fig.5.
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Fig. 2. Frequency Devlation of 8th order interconnected
system
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Fig. 3. Controller Parameters of 8th order interconnect -
ed system

VI. CONCLUSIONS

The design of decentralized adaptive controller
for a class of large scale systems is investigated.
Two areas which are connected by tie lines are con-
trolled by adaptive load-frequency control, A de-
centralized adaptive controller is proposed to dr-
ive the unknown subsystems to track the local re-
ference models as closely as possible with reduc-
ing residual output errors, A numerical simulations
of adaptive power system are presented to dem-
onstrate the possibility of the higher order inter-
connected systems.
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