신경망을 이용한 인쇄체 한자의 인식

An recognition of printed chinese character using neural network

  • 발행 : 1993.09.01

초록

본 논문에서는 종래의 결정론적 방법과 신경망을 이용하여, 인쇄체 한자를 인식하는 방법을 제안하였다. 먼저 한자를 구성하는 획성분의 4방항백터를 추출하였다. 다음에 구해진 방향벡터에 무게중심의 메쉬를 만든 다음, 각 메쉬내의 흑화소 길이로 8$\times$8의 특징 매트릭스를 구성하였다. 정규화한 특징 매트릭스 값은 14의 문자형식으로 1차 분류하기위해 신경망에 입력으로 하였고, 이 분류된 문자는 부수를 인식하는 부수인식 신경망에서 다시 2차분류하였다. 마지막으로 2차분류된 문자는 입력한사와 표준한자와의 유사도를 적용하여 최종인식을 행하였다. 본 알고리즘이 한자의 인치에 유효함을 보였다.

In this paper, we propose to method of recognizing printed chinese characters which combine the coventional deterministic methods and the neural networks. Firstly, we extract four directional vector of strokes from chinese characters. Secondly, we make the mesh of the center of gravity in the vector and then constitute the H x8 feature matrix using black pixel lenth from each meshs. This normalized feature matrix value offer as the input of neural network for classifying into the 14 character types. And this calssified character classify again into Busu group by the Busu recognizing neural network. Finally, we recognize each characters using the distance of similarity between input characters and reference characters. The usefulness of the proposed algorithm is evaluated by experimenting with recognizing the chinese characters.

키워드