기울기 검출에 의한 얼굴영상의 인식의 개선에 관한 연구

A Study on the Improvement of the Facial Image Recognition by Extraction of Tilted Angle

  • 이지범 (광운대학교 전자통신공학과) ;
  • 이호준 (광운대학교 전자통신공학과) ;
  • 고형화 (광운대학교 전자통신공학과)
  • 발행 : 1993.07.01

초록

본 논문은 얼굴화상에서 국부적일 특징점을 추출하여 기울기에 robust하게 얼굴을 인식하는 새로운 알고리즘을 제안하였다. 바른 자세의 영상과 기운 자세의 영상을 받아 2치화를 한 후 라플라시안 윤곽선 검출기를 이용하여 윤곽선 영상을 얻는다. 윤곽선 영상에서 최외각 윤곽선을 제거하고 내부 윤곽선은 위에서 아래방향으로 주사하면서 나타나는 순서에 따라 네 영역을 각각 A, B, C, D영역으로 레이블링하고 기준선을 중심으로 좌우로 영역을 분할하고 좌우 영역을 상하로 분할하여 모두 네 영역으로 나눈다. 좌우 눈간 거리, 눈과 눈썹사이의 거리, 눈과 코와의 거리 등을 이용하여 최종적으로 두 눈을 찾고 두 눈의 중심좌표값을 이용하여 기울기를 구한다. 기울기 정보를 이용하여 기운 영상을 바로세우고 난 후 눈 아래 영역에서부터 탐색하여 코와 입을 찾는다. 각 특징점간 거리를 계산하고 이를 두 눈사이의 거리를 기준으로 정규화하여 영상의 크기에 무관하게 한다. 인식 실험 결과 25명에 대하여 기울기를 고려한 경우 88%의 인식율을 보였고 기울기를 고려하지 않은 경우 60%의 인 식 율을 보였다.

In this paper, robust recognition system for tilted facial image was developed. At first, standard facial image and lilted facial image are captured by CCTV camera and then transformed into binary image. The binary image is processed in order to obtain contour image by Laplacian edge operator. We trace and delete outermost edge line and use inner contour lines. We label four inner contour lines in order among the inner lines, and then we extract left and right eye with known distance relationship and with two eyes coordinates, and calculate slope information. At last, we rotate the tilted image in accordance with slope information and then calculate the ten distance features between element and element. In order to make the system invariant to image scale, we normalize these features with distance between left and righ eye. Experimental results show 88% recognition rate for twenty five face images when tilted degree is considered and 60% recognition rate when tilted degree is not considered.

키워드