한국통신학회논문지 (The Journal of Korean Institute of Communications and Information Sciences)
- 제18권5호
- /
- Pages.634-642
- /
- 1993
- /
- 1226-4717(pISSN)
- /
- 2287-3880(eISSN)
TDNN 다층 신경회로망을 사용한 로봇 매니퓰레이터에 대한 궤적 제어
Trajectory Control of a Robot Manipulator by TDNN Multilayer Neural Network
초록
본 논문에서는 로보트 매니퓰레이터 제어를 위하여 시간 지연이 있는 다층 신경회로망(TDNN)의 학습 알고리즘으로 매니퓰레이터의 역동역학 모델을 학습시키고 이것을 앞먹임(Feedforward)제어기로 사용하는 궤적 제어 방법을 새로이 제시하였다. TDNN 구조는 뉴런이 현재 및 과거의 입력 신호로부터 더 많은 정보를 추출할 수 있고 보다 효율적으로 학습할 수 있는 유리한 특징을 가지고 있다. TDNN 신경회로망은 기준 궤적 입력 신호와 비례 미분 제어기의 오차 신호를 각각 정규화하여 받아드린다. TDNN 신경회로망으로 입력되는 정규화 신호는 TDNN 신경회로망의 학습 효율을 향상시키는 것으로 입증되었다. 제안된 제어 방법을 두개의 관절을 가진 평면 로보트 매니퓰레이터에 대하여 적용하고 컴퓨터 시뮬레이션으로 고찰하였다.
In this paper a new trajectory control method is proposed for a robot manipulator using a time delay neural network(TDNN) as a feedforward controller with an algorithm to learn inverse dynamics of the manipulator. The TDNN structure has so favorable characteristics that neurons can extract more dynamic information from both present and past input signals and perform more efficient learning. The TDNN neural network receives two normalized inputs, one of which is the reference trajectory signal and the other of which is the error signals from the PD controller. It is proved that the normalized inputs to the TDNN neural network can enhance the learning efficiency of the neural network. The proposed scheme was investigated for the planar robot manipulator with two joints by computer simulation.
키워드