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Abstract

In this paper!, we present new techniques for designing systolic arraya and asynchronous arrays
for digital-signal processings. More specifically, we propose a systolic array with simple local
interconnections which achieves optimal performance without having undesirable features such as
preloading input data or global broadcasting, As asynchronous array for digital-signal processings
which can speed up the total computation time significantly is also which can speed up the total
computation time significantly is also presented. The key component of the asynchronous array is a
presented. The key component of the asynchronous array is a comunication protocol which controls
input data flow properly and efficiently. Finally, performance of the arrays is analyzed and a simu-
lation using Occam programmed in a Transputer network is reported,
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L. Introduction handled by high performance supercomputers, in-

cluding pipelined computers, array processors,

Until recently, computer-intensive tasks were and multiprocessor systems, However, the gen-
eral-purpose nature of these machines results in a

HRR KB EEE ] o
,iﬁﬁ&%&gﬁﬁ—%? complicated system organization and heavy sys-

tem operation overheads. It turns out that these
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machines are not suitable for real-time signal
processing where a very high throughput rate is
absolutely essential. A more promising solution to
the real-time requirement of signal processing is
to use special purpose VLSI architectures such as
systolic arrays, which attain tremendously mass-
ive concurrency. In other words, one of the most
suitable architectures for VLSI implementation is
a systolic array. Its simple communication struc-
ture, the use of simple and uniform processing
elements, and low I /O requirements are features
that make it very attractive from the viewpoint
of current technology. The architectures of sys-
tolic arrays depend on algorithms. The algorithms
under consideration are recursive algorithms in-
cluding matrix multiplication, FIR filtering,
deconvolution, triangular matrix inversion, and
discrete Fourier transformation.

In this paper, we propose a new idea for design-
ing systolic arrays to implement recursive
algorithms efficiently. More specifically, we de-
sign a systolic array to compute matrix multipli-
cation in 2»-1 time-units using #? processors for
input matrices of size nXn, no preloading or glo-
bal broadcasting of input data assumed. For pre-
vious fast systolic designs of matrix multipli-
cation, see [1],[4],[5],[11],[12],[16],[21], and
(23], In [11], L.Melkemi and M. Tchuente show
that computing an nXn matrix product in 3n-1
time-units is optimal for any orthogonally connec-
ted systolic array. They proposed a non-orthog-
onal systolic design in [12] which can compute a
nXn matrix product in 2»n-1 time-units,
Unfortunately, their design needs n(2n-1)
processors and cannot be fitted into a rectangle
with a uniform pattern. Another 2n-1 time sys-
tolic design in [16] requires preloading of one in-
put matrix, and the pipelining feature will be
blocked if there are multiple matrix
multiplications. systematic approaches for design
of systolic arrays have been studied by many

2Transputer and Occam are trademarks of the INMOS
Group of Companies.

researchers (see [9],[131,(14],[23], and [24]),
and research on the subjects such as mapping re-
cursive algorithms to arrays with varying
interconnections still remains very active,

The main problem in a systolic approach is that,
to assure proper timing and synchronization, extra
delays are needed, this slows down the computation,
thereby decreasing throughput rate, Moreover, for a
large scale array, this synchronization would become
very tedious. to overcome this problem, an asyn-
chronous implementation which is a hybrid of sys-
tolic and data flow approaches is introduced. It has
the advantage of eliminating or reducing waiting
time by making the data streams independent of
computations executed in each processor, For other
designs of asynchronous arrays, see[2],[8],(18], and
{20].

This paper is organized into five sections. In sec-
tion 2, we introudce the idea of transformaition of a
recursive algorithm into a locally recursive algor-
ithm. Then, we describe a new technique for design-
ing an interconnection scheme which implements a
locally recursive algorithm of matrix multiplication
efficiently. With the proposed interconnection
scheme, we obtain a systolic algorithm which is the
best among all known designs, i.e., minimizing
(computing time) X (number of processors). Systolic
computing for matrix multiplication of arbitrary size
in a proposed array of fixed size is described in sec-
tion 3. In section 4, an asynchronous design for
matrix multiplication which can speed up total com-
putation time significantly is proposed. The struc-
ture of processing elements (PEs) and its communi-
cation protocols, which control asynchronous
computations, are presented. a performance analysis
and a simulation using transputer’ networks pro-
grammed in Occam are also given. Finally, in sec-
tion 5, some concluding remarks are made.

II. Systolic design for digital-signal processings

First, we define some basic terms that will be
used for investigating recursive algorithms,
Based on these terms, we will introduce a design
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procedure which creates a systolic array and a
systolic algorithm for implementing a recursive
algorithm efficiently. We illustrate our technique
by showing the process of designing a systolic ar-
ray for matrix multiplication. It is very
interesting to see whether the design technique
can be applied to other recursive algorithms that
share a similar structures.

2.1 Digital-signal processings

Before starting to describe the proposed tech-
nique, we Introduce some notation that will be
used through out this paper.
(Definition 1) A recursive algorithm is an algor-
ithm presented by a set of recursive equations,

The derivation of recursive equations is often
straightforward and can be found widely in the
literature. We list some recursive equations
which appear in many application areas,

(a) Matrix Multiplication :

w) = 1<ij<n
(2.1) wl=w! "+anby, 1<ijk<n

(b) Finite Impulse Response (FIR) Filtering :

wl=0 1<i<n
(22) wf=wf”+a,,b,+,,1 IS]Sn,
1<k<m, bj=0for j>n

(¢) Deconvolution : {This is the inverse of FIR
filtering that solves for vector X, given vec-
tor Y and the toplitz matrix A, z* are tempor-
ary variables.}

=y 1<i<n
=2~ a1 Fibmor 1<R<M—],
1<ig<n, y=0forjzn
(23) x=(z" "/ay) 1<i<n

() Triangular Matrix Inversion : {Given a matrix
U such that #;=0 for i>j, the following
equations compute V=U"!, w,; are temporary
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variables, }

w! =0 1<i<j<n

wf]=wfj+’ —wuirvr; 1<i<k<j<n

v,; =0 1<i<j<n
(2.4) v,,=(1/u,;) l<i<n,

(e) Discrete Fourier Transform (DFT) : {w=¢>v=1
/7 is the nth root of unity.}

y0=0 l<i<n—1
(2.5) yi=ytlpitx, , 1<k<n, 0<i<n—1,

The above algorithms are defined over a finite
index space. The activities of an algorithm con-
sist of computing the values for a set of indexed
variables over this index space. Each of these
variables is similar to a multidimensional array,
with a separate occurrence at each index point,
The single value is computed for each occurrence
of each indexed variable. The computation of any
indexed variable in the algorithm may depend on
the values of other indexed variables, The
outputs of an algorithm can be any variables at
the boundary of the index space. In the design of
VLSI architecture, a need has been recognized
for algorithm reindexing in order to avoid
broadcasts. The goal is to obtain broadcast-free
or broadcast-reduced schedules.

The design of systolic arrays to implement the
above recursive algorithms efficiently is a diffi-
cult but extremely important problem. In this
paper we have explored the process of design for
matrix multiplication as described in the follow-
ing section.

Some more notation that will be used through
out this paper are defined below :

(Definition 2) A data dependency is a dependency
that dictates the sequence of computation,

(Definition 3) A dependency graph is a graph
that shows the dependency of the computations
that occur in an algorithm. An algorithm is com-
putable if and only if its dependency graph
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contains no loops or cycles.

(Definition 4) A localized dependency graph is a de-

pendency graph which has only local dependercies,

Le., the length of each dependency are is indepen-

" dent of the problem size,

(Definition 5) A computational graph is a localized

dependency graph with each node in the graph

labeled by the indices of the terms it computes,

(Definition 6) A projective graph is a computational

graph after projection along a specific line.
Conceptually the computational graph contains

all information about the algorithm that is to be
systolized. The purpose of introduction of the
projective graph is to improve PE utilization dur-
ing systolization process.

2.2 A systolic design for recursive algorithms

To achieve maximal parallelism of an algor-
ithm, we must try to find data dependencies in a
course of computations. Observe that, in the
equation of matrix multiplication, the dependency
of w* i is local, while the dependencies of a;; and

Matrix B

b

e

(e (2

141
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Figure 1. The computational graph of the matrix multi-

plication algorithm.
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by, are global. The global dependencies can be
loclized by distributing a,, and 4, values without
global broadcasting in the way described below.
It results in an algorithm with local dependencies,
The techniques for the localization of data
dependencies have been studied in many lectures,
(for example, see [24]). The computational graph
of the algorithm which expresses data
dependencies precisely is drawn as Figure 1. For
1<ij.k<n

ik if j=n+1
2.8) alik)={ Lkj+1) if 1<ijh<n
ifi=0

(2.9) ik )= "
R “{b(z'—l,k,j) if 1<uj.k<n

2.10) wiip )= a=0
VT EARRY ‘{m(z‘,/e—1,j)+a(z',k,j) if 1<ijk<n

(21D w,=wling) :

The next step of the designing procedure is to
group a set of vertices together to produce a
two-dimensional computational graph. The direc-
tion of grouping is along the second component of
the three-dimensional index space : see Figure 2.
The purpose of the grouping is to maximize the
utilization of the processors. There are many dif-
ferent ways to group a set of vertices(for
example, see[9], and [24]). It seems that none of
them can achieve better time complexity. Note,
from Figure 2, that the total time complexity is

. ostep 1
:ostep 2

:ostep 3

: step 4

Tostep 5

tstep 6

1 ostep 7

Figure 2. The Computational Graph after grouping.
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3n—1 as the longest path in the graph is 2n—1
and the input length is #. In [11], L. Melkemi
and M. Tchuente show that time 3z—1 is the
best one can do for mesh-connected arrays.

we must
reconfigure the above pattern, The strategy is to re-

In order to achieve better design,

arrange the order of computation in such a way that
all PEs at the first row can start their computations
immediately. The new order of computation is
arranged as follows : embed the top triangle of the
figure, i.e., steps 1-3, into the left lower part of the
square shown in the figure, To ensure the proper
data streams, the wraparound connection of the ar-

b 3 b, a,

a b a
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b, 3, b, a,

o
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ray is required. The new systolic computing pattern
is shown in Figure 3. In this new configuration, the
computations occur at step 4, then steps 1 and 5,
then steps 2 and 6, and finally steps 3 and 7 simul-
taneously. Although the computation order is differ-
ent, it is not difficult to prove that the new con-
figuration results 1n a correct answer for matrix mul-
tiplication. The interconnection of this new systolic
array is shown in Figure 4, Each PE has two com-
munication lines : one is vertical and another is diag-
onal. As we can easily observe, the computation
time is reduced to 2x—1. Note that the product of
input matrices, w,,, remains in each PE. PE,; will
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hold ; (- i+1)mat), Where we assume 1<(j~7+1)
mod(n) <n. Based on the above discussion, we can
state the new systolic algorithm as follows :

Algorithm 1. Matrix Multiplication (systolic ver-
sion)
{aliy), b(ij), w(i;) are all local variables of PE,,.}

bf‘,g‘,r)l_ @i if i=1
oy “{a(z‘—u) if 1<)

by ifi=
by ={ " ifi=1

b(i—1,G—Dmod(n)) if 1<i)
w(ij) =w(iy) +alij)«b(i7)
end

PE, ) ) *h

Y & % %

5 R 5 &

P§l PE;Z PE P

pm

r

Figure 4. The interconnection scheme of the proposed
systolic array.

Note that the index x is a time variable, It
varies from 1 to # indicating that two input
matrices are loaded in a pipelined fashion into the
array in the first » steps. The computations are
completed after 2n—1 steps.

The above systolic design for matrix multipli-
cation is the best among all known designs in
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terms of the computing time and array size, i.e.,
(computing time) X (array size). In the next sec-
tion, we describe how the matrix multiplication of
arbitrary size can be computed efficiently in a
proposed array of fixed size.

II. Digital-signal processings for
arbitrarily large matrices

The rigidity of VLSI arrays, caused by their
fixed size and fixed interconnection, is a serious
problem which must be overcome before these
devices become widely used, a natural solution to
this problem is to divide the computations into
small pieces to match the array size. We describe
below how to apply this partitioning approach to
compute the matrix product of arbitrary size in a
fixed size array with the proposed architecture,

Suppose that the input matrices are of size nX
n and the array is of size m Xm, where m<«n, Par-
tition the product W into 4% submatrices each of
size mXm, where k=n/m. Each of these
submatrices can be computed in a+m—1 steps.
The input data needed for computing submatrix
W.;, where 1<ij<k, are m rows of matrix A,
from (m(j)+1)th colum to (im)th row, and m
columns of matrix B, from (m(; —1)+1)th column
to (jm)th column. The configuration of these
inputs for computing submatrix W), assuming
m=4, is depicted in Figure 5.

The total computing time is A(n+m—1)=
n? /m? This result is nearly optimal in the follow-
ing sense :

(total computing time) x ( # of processors) = »*.

The performance of the proposed array can be
improved further if an asynchronous approach is
adopted. In the following section, we will explore
the potential of this approach. The idea used here
is to design self-timed processors and communi-
cation protocols to get control of data streams
such that each computation can start as soon as
all of its data are available, The proposed array is
a hybrid of systolic arrays and data flow
machines.
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Figure 5. The computational scheme for computing
submatrix Wy 1.

IV. An asynchronous design and
its time analysis

A majority of the signal processing algorithms
require the computation of inner product. In a
systolic array each PE receives the data, carries
out the multiply-and-add operation, and pumps
the results rhythmically to the neighboring PE.
Systolic arrays have been extensively used in
many signal and image processing problems, and
in matrix multiplication,

One problem with previous systolic arrays is

the global control of data movement in different
PEs. To assure proper timing and synchronization
in systolic arrays, extra delays are needed. This
slows down the computation, thereby decreasing
throughput rate. Moreover, for large scale arrays
this synchronization could become very tedious.

To overcome these difficulties and to speed up
the computation time, design of asynchronous
arrays was explord ;see [2],[8], and [17]. In an
asynchronous design, instead of using gloval clock,
self-timed PEs and communication protocols are pro-
vided. The advantage is that the whole period of a
clock unit for multiplication, addition, and routing
can be separated into several small steps and some
of these steps can be executed simultaneously. The
conicept of asynchronous computations can be speci-
fied as below :

send an acknowledge signal to previous
processors while getting data from them
(1 step) :

send a request signal to next processors

while forwarding data to them

(2 step) : transfer data to next preessors

(3 step) : multiply input data and accumulate the
resulls ;

Note that steps 2 and 3 can be executed simul-
taneously. In this section, we will develop a
prococol to implement the above processes. The
idea is to use self-timed PEs in which the inner
product operation is triggered by the availability
of the data. The major difference between the
two architectures is the fact that the new array
transfers the data to the next cell asynchronously
by its local control unit, while systolic arrays re-
quire global timing for the control of data flows.
Therefore a PE does not have to wait for data un-
til the previous PE completes its computation, It
has the basic features of the previous systolic ar-
ray with the exception that the data routing and
computing in each PE can be operated simul-
taneously. The following algorithm reflects this
new feature,
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Algorithm 2, Matrix Multiplication (preliminary
asynchronous version)

begin
while there are data entering PE..,. Do
begin
receive input data a,, & 4., :
transfer a,; to PE .+, :
& transfer b; 4 t0 PE+1 (+1medin)
&  mult ;< apsby;
w, < wi + muldty;
end while ;
end

4.1 A protocol for implementing Algorithm 2

To make the data flow independent of the mul-
tiply-and-add operation in each PE, we need a
protocol to control the flow of data such that the
values of input variables will not be overwritten
during their computing periods. In the proposed
protocol, four kinds of signals (REQ, ACK, FIG,
and EMP) are intorduced : two external signals
and two internal signals. The function of an REQ
signal is to report to the next PE that the data in
its output port is read
y for transmission. The function of an ACK signal
is to report to the previous PE that its input port
is ready to receive new data. The functions of
FLG and EMP signals are to report the complete-
ness of the multiply-and-add computation and the
emptiness of the multiply-and-add computation
and the emptiness of the input port. the protocol
can be described formally as below. Note that
only the protocol for dat stream a,; is specified.
The specification of the protocol for data stream
b, is similar and is omitted.

1. Each PE;; receives a request, <REQ!-1;>,
from PE,-;; when the data in the output port
of PE,-, are ready to be transmitted.

2. Each PE;; receives an acknowledge, <ACK 4, >,
from PE,+;; when the input port of PE+1, is ready
to accept new data.

3. Each PE,; has two internal signals, <FLG; >
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and <EMP; > which report the completeness
of the multiply-and-add operation and the emp-
tiness of the input port

4. There are three transition latches in each PE;.

——— tansidon(l/O) latch
—= data line
—* signal(ACK/REQ) line
QO dan buffer

request flag

internal flag
acknowledge flag

E empty-input buffer flag

m addidon transidon
m muldplicadon transition

REQACK) Pinpus "iTm (REQ/ACK)

EA

29)
m—

[ S ———)

OO,

[AlO O[Al
gy %3
1= [t
! i
i
T (ACK/REQ) l (ACK/REQ)
b ) a
outpw output

Figure 6. The proposed protocol in each PE,

Latch #1:to control the data flow from the out-
put port of PFE,, to the input port of
PE4,

Latch #2:to control the data flow from input
port to buffer-for-mult and to output
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port, and to activate the signals, <
REQ{-1,> and <EMP,;>, it is fired
only after the signal, <FLG;>, is
received,

Latch #3:to activate the signal <ACK-,;>
which is fired toward PE,-,; only after
both signals, <REQ /-1, >, is received.

In Figure 6, we depict a detailed configuration
of this protocol. The signal buses and the data
lines among different PEs in a 2X2 array are
shown in Figure 7. Note that for each input
matrix we need two lines which cross different
PEs : one is a one-way data line and the other is a
two-way bus for transmission of bit-signals, REQ
and ACK.

The completed version of asynchronous algor-
ithm for matrix multiplication equipped with the
proposed protocol is described below.

Algorithm 3. Matrix Multiplication (a completed
asynchronous version)

Begin
For all PEs asynchronously do
Begin
Wait for REQmpw from the previous PE ;
Receive REQinpu
While input port is empty do
Fire REQinpu & EMP:
Send ACKinpur
Receive data from the previous PEs :
Store data into the input port ;
Fire Send REQoupu to the next PE;
Send data to output port &
buffer-for-muit ;
Wait for ACKoupw from the next PE ;
{The instructions below are for
internal computations.}
While two input data in buffer-for-
mult available do
Read data from buffer-for-mult :
Mult (weaz*bys)
Store wy, into buffer-for-add.
Read w,, from buffer-for-add :
old w,, from buffer-for-W ;

Add (old w,, «old w,, +w,,) ;
Store old w,, into buffer-for-W ;
Send FLG signal ;
Endwhile
Endwhile
Endfor
Until there are no more data entering PE :
End

It is easy to see that the algorithm described above
correctly implements the preliminary asynchronous
version of the matrix multiplication algorithm. Since
the new input datum is received only after ACKpu is
fired, indicating the completeness of internal
computations, it guarantees that overwriting of input

data will never occur,

Figure 7. A complete configuration of the protocol
for a 2-by-2 array.

In order to confirm that the performance of the
asynchronous algorithm equipped with the proposed
protocol will be better than that of systolic
algorithms, we simulate the proposed asynchronous ar-

ray using an Occam language. The channel
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communications defined in Occam are basically the
same as the communication protocol used. Hence a
Transputer network programmed in Occam may quite
naturally simulate the asynchronous arry. We describe
a delay model and our simulation results under the de-

scribed delay model at the next section,

4.2 Simulation models and performance analysis

The simulation model used here is called graphic
data flow model. This model is suitable for description
of time complexity for both synchronous and asyn-
chronous computations,

First, we give definitions of some notations which
will be used for describing the tie models of the

arrays.

Trve time for firing data via latch #2

T., time for reading data from input port
Tr propagation time of signal REQ

T. propagation time of signal ACK

Ty, time for internal data transfer

Tpn. time for external data routing

Tx propagation time of signal EMP

Ty time for fetching data from buffer-for-mult
Ty comjputing time for multiplication

T4, computing time for addition

Tr propagation time of internal signal FLG

From the above definiton, a simulation model
for the time complexity of a single PE of the
asynchronous array is drawn as Figure 8. Note
that all parallel edges can be executed simul-
taneously.

From this graph, the time delay of a single PE
of the asynchronous array, Tpgs»), can be de-
scribed by the following formula :

Tostasen) = Tt it max { et T+ Tr max Tt Ty T I

The total computing time of the asynchronous

array is approximately :

Tuattasen) = (0 = I Tt T+ e+ T, Ip,) + 0 TpECasn)

In order to evaluate the performance of the
proposed asynchronous array, we carried out a
simulation, The simulation was run in a
Transputer network programmed in Occam. The

420
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Figure 8. A simulation model for an PE of the
asynchronous array.

Occam language is based on the models of
communciation and concurrency :therefore it is
suitable for programming and simulating either
systolic arrays or asynchronous arrays. A con-
figuration which indicates the assignment of
channels for the communication protocol of a PE
is shown in Figure 9. The main procedure for the
simulation is liste in Figure 10, with correspond-
ing time notations indicated.

In a synchronous model, estimating the time
delay of single PE is rather simple and can be
state as below :

Tretom = Tt Tyt Ta, A max {Tet T, T VT,

Note that the internal signal FLG is not necess-
ary in a synchronous array. The total computing
time of the synchronous array is :

Tootattsemy = (20— 1) To(ym).

The two curves, shown in figure 11, are plotted
from the results of our simulation. In this simu-
lation the size of input matrices is equal to the
size of the arrya. It turns out that the perform-
ance of the asynchronous array is superior to that
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(i) in.portl.req.B(il{j] ' () inpond.reqA{ii(i}
(ii) in.ports.ack.B{i+1](j+1] (i) in.pontb.ack.A{i+l]){)
(iii) in buffer.B(ij(j) l ‘

L i (i) inbuffer Afi](]

portl, pori2 for B - ==t | port3, portd for A

1) e
@-——u

"ER]
EQ SE
portS for B 2+ —L‘ portS for A
(Giv) in.portl.req.Bli+1)G1) l l I @) in 4
) -portd.req. A(i+1](]
™ f&m.uumm (v) inponback A(i}()
(vi) inbuffer B(i+1)(G+1) (Vi) inbuffer Afi=1 1]

Figure 9. Channel assignments for an asynchro-
nous simulation,

SEQ
PAR
Readinput A ( in.buffer Ali](j], in.por2.Ali}(§] )
Readinput B ( in.buffer BliJ(jl. in.port2.B(illi] )
PAR
Firepord.for.A  ( inpor3 Ali](j), inpor3.Fafi)(j)], outpor3.Ali)ti),
outportd.req.Alilljl. outpord.arith Ali)(jl, outportd.Ea(il{j] ) T
Fire.por2forB  ( in.pon2.B(i](j), in.porc2 Fb{il(j). outporBIi}(j]. fire
outpor2req.B(i)j). outpor2.arithB(i)(j}. outper2.Eb[i){j] )

PAR
SEQ
PAR
Seadreq.A ( outportdreq.Alil(j). inportdreq. A(i+1)(] ) T
Sendreq.B  ( outpor2req B(ili], in.portl.req.Bli+1jlj+1] ) R
PAR
Waitfor.in.ack. A ( in.portd.req.Ali+1](j], in.pord.Eafi+1](j1,
in.ponack Ali){] ) T,
Waitforinack B ( in.portl.req.Bli+1}{j+1), in.portl.Eafi~1}(j+1],
inponSack B(i)G] )
SE
PAR
To.outbuffer A ( out port3.Afi](j]. outbuffer. A[J(] ) T...
To.outbuffer B_( outpor?.BIilffl, outbufferBfilfi] ) bi
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PAR

Fire.port6for. A ( in.pontéinack AGJ(5). outbuffer.A [i)(j).

. inbuffer Ali+11(5)

Firc.portS.forB ( inportS.inack B{i){j}. outbuffer.B[i](j].
inbuffer B(i+1)(j+1] )

) T,

o

PAR
Empry.sams.for. A ( outport3 Eafi)(j], inpord Eafi](j] ) T
Empry.samsforB ( outpor2.Eb(i](j). inportl EX(i}{j] ) E
SEQ
PAR
To.arith buffer. A ( outport3aridi A(i)(j), arithdata Ali}(j) )
To.arith.buffer B ( outport2arith.BA][i]. _arith.daw BIil[i} ) T
SEQ
Muldplicaton ( arith.data Afi)(j). arith.daaa B(i)(j], newresuldilli) ) | T
Addidon ( newresult(i]{i}. oldresult(i](jl. Flil[i] ) 1:‘
PAR
On_suatus.for.Fa { F{i]{j]. outpon3.Fa(iljl ) T
On.staus.for.Fb ( FTil[i]. out.por2.Fufilli} ) ld

Figure 10. A simulation procedure for asynchro-
nous matrix multiplication.

synchronous

asynchronous

| ] 1 ] |

|
0 2 4 8 16 32 6 128 256 *APE

Figure 11. Systolic vs, asynchronous arrsy.

of the systolic array

4.3 Efficiencies and Comparisons
In this approach we have presented an advanced
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systolic array with asynchronous dataflow. The ar-
ray has the features such as locality, modularity,
self-timed PEs with asynchronous data transfer, and
independent  dataflow with respect to PEs
operations.

The advanced systolic array(ASA) and the pre-
vious systolic arrays(PSA) can be analyzed as
follows.

(1) Let T, be the average time for transfer datum
from PEs to PEs. The 7\ is the total time of a input
transfer, a output transfer, a acknowledge, and a re-
quest time in each processing element.

(2) In most matrix processing, each PE
performs both a multiplication and a addition
operations, Let T,, be the required time for multi-
plication and T, for addition operation. Then T, +.
time be the average time for multiply-and-add.

(3) If T,+.<T» then the c omputing time is
completely by the data-transfer time ex cept the
computing time of the bottom PEs.

In this case,
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Tiotas = (n —1) (TA )+nTm+a

(4) If T,+a>Ty then time delay a=T,+.—Th
need to be added for the actual data-transfer time
between PEs.

In this case,

T = (n—I{(G+a) +nTea = (2n—1)Tu+a.
The total processing time is

T = (n=1)max{y , T ol + 1T v

(5) On the other hand, the total time Tp.y for
the previous systolic array(PSA) with synchron-
ous controls is given by

Toia=2n—1DL+Cn—1T o= Cn—D(G+T+4)
(6) We can conclude that

(@)Tw+a <13  Tpsa—Tusa=nTi+H{(n—1) Tr+a
(D)T+ . >Tn  Trsa—Tysa= 2n—1)Tx

Hence our advanced systolic array(ASA)
scheme 1s more effcient than the previous sys-
tolic array(PSA), because data-transfer time is
possibly masked. For more efficent VLSI im-
plementation, the operations of each PE is con-
trolled locally and handles asynchronously. This
approach speeds up the computation time by
allowing the individual PE to operate indepen-
dently to reduce the waiting time,

V. Conclusions

In this paper, we have shown new designs of a
systolic array and an asynchronous array for matrix
multiplication, The design procedure should be ap-
plicable to other recursive algorithms, It will be of
great interest to design effcient systolic arrays and
asynchronous arrays for thos recursive algorithms
described in section 2. The new systolic array

achieves better performance by using a wraparound
connection. the asynchronous array improves the
performance of the systolic array further as
indicated in our simulation, Some additional hard-
ware is needed for implementing protocols, but a re-
duction of computing time is significant for large
scale computations. It maight be possible to improve
the proposed protocol for data communication,
Issues about implementation and evaluation of the
asynchronous array deserve more research atten-
tion. More research can be conducted in this direc-
tion,
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