역전파 알고리듬과 사전을 이용한 필기체 영문자 인식

A Recognition of Handwritten English Characters Using Back Propagation Algorithm and Dictionary

  • 김응성 (성균관대학교 전자공학과) ;
  • 조성환 (대유공업전문대학 전자계산학과) ;
  • 이근영 (성균관대학교 전자공학과)
  • 발행 : 1993.02.01

초록

본 논문에서는 역전파 알고리듬으로 학습된 신경회로망과 사전을 이용하여 필기체 영문자 인식을 수행하였다. 스캐너를 이용하여 입력된 영상화일로부터 불필요한 데이터 부분을 제거하고 문자의 다양성을 최소화하기 위해서 여러가지 전처리과정, 즉 문자분리, 중심변환, 잡음제거, 배율조정과 세선화과정을 거쳤다. 다음으로 세선화된 문체 패턴으로부터 문자의 특징이 추출되고, 신경회로망에 시험데이터에 대한 특징들을 학습시켰다. 그리고 테스트할 영문자에 대해서도 특징들을 추출하여 이미 학습된 신경회로망에 의해 분류하였다. 마지막으로 학습시간을 줄이고 인식율을 향상시키기 위한 방법과 학습시간과 은닉층의 노드수에 대해 고찰하였다. 실험 결과로서 이와 같은 시스템으로 필기체 영문제에 대하여 학습후에 약 93%의 높은 인식율을 얻을 수 있었을 사전을 이용했을 경우 인식율이 약 97%였다.

In this paper, it is shown that neural networks trained with back propagation algorithm and dictionary can be applied to recognize handwritten English characters. To eliminate the useless data part and to minimize the variety of characters from the scanned image file, various preprocessings : that is, segmentation, centering, noise filtering, sealing and thinning are performed. After these, characteristic features are derived from thinned character pattern. The neural network is trained by using the extracted features for sample data, and all test data are classified into English alphabets according to their features through the neural network. Finally, the ways of reducing learning time and improving recognition rate, and the relationship between learning time and hidden layer nodes are considered. As a result of this study, after successful training, a high recognition rate has been obtained with this system for the trained patterns and about 93% for test patterns. Using dictionary, the recognition rate was about 97% for test pattern.

키워드