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Nonparametric Empirical Bayes Estimation of a
Distribution Function with respect to Dirichlet Process
Prior in Case of the Non-identical Components3)

Inha Jung4

Abstract

Nonparametric empirical Bayes estimation of a distribution function with
respect to Dirichlet process prior is considered when sample sizes are
varying from component to component.

Zehnwirth's estimate of o(R) is modified to be used in our empirical
Bayes problem with non-identical components.

1. Introduction

In nonparametric ststistical decision problem with respect to Dirichlet process
prior D(a) originated from Ferguson(1973), parameter space is the set of all
probability measures P on a measurable space (X,A). Statistician chooses an
action @ and thereby incurring loss L(P,a). Infimum Bayes risk is denoted by
R(a). Even if « is unknown, one can construct a statistical procedure based on
the data gathered from n independent repetitions of the decision problem for which
the risk converges to R(a) as n—® for all a. Only sequences of identical
components have been treated in the nonparametric decision problems. However,
it is clear that when the only difference from component to component is sample
size, empirical Bayes methods should still be useful. In this case there is not a
single Bayes envelope R(a) but rather a sequence of envelopes R *(a), where
kn is the sample size in the n-th component problem.
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Let P, P~ be a sequence of iid. random probability measures on (XA).

from a oprior distribution given by Dirichlet process D(a) and let
Xi=(Xa,, X&) be a random sample of size k; from P; i=1,2 . For the

decision on Pn.1, we seek a decision procedure f,:1 based on Xj, -, Xna+«1 such
that
im{ R *(tna)-R*(«)]=0 for all «( -), (1.1)
n

where Rk"(t,.,a) denotes the Bayes risk of the rule t, based on k, observations.

Definition 1.1. A statistical decision procedure {¢,} is said to be asymptotically
optimal (a.0.) if it satisfies (1.1) for all a( - ).

Let X=R= real line, A = B = all Borel sets in R. We consider the problem of
estimating Fn+1(¢) =Pp.1 ((-®,¢]) using X, -+, Xn+1 under the loss function

L(Fr, F)= | (Faet (8)- F(@®))2dW(2), (1.2)
R

where W(-) is a given finite measure on (R, B) and F is an estimate of Fp.j.
Parameter space and action space are the set of all distributions on (R, B). Let
ﬁ‘.- denote the empirical distribution function determined by the observations from

the i-th component X;=(Xa, ~, X&), i=1,2,-+,n+1. Under the loss function given
by (1.2), Bayes estimate of Fp.; for the no-sample problem is Fo(t)=EF,.1(t).
Bayes estimate of Fp.; based on the observation Xpn+1=(Xpe11, =, Xn+1ke) IS
Fri () =E[Fpu (O] Xpuil. Since Fn(t) has distribution Beta (a((-,¢]),
a((t,®))) and posterior distribution of Fn.(t) given X,.; is provided by

kg
D(a+ i;'éx,.u) with 3, denoting the unit mass at x, we see that
“

Fopy=—L2dl) 1.3)

Fn*l (t) = (1"P K ne1 )FO( t) +P Knst F;ﬁl (t), (14)
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where
_ k n+l
Pran™ knd"'a( R) . (15)
The Bayes risk of F',.1(¢) is given by

R¥(8) =E[ ( Frer()-Frar(6)dW(t)

(1.6)
= [ [ ECFae1 (9-Faui()2aw(0)
Define for n=1,2, -+ the sequence of estimates H ,.; by
Hpi(©=(1- Do) Fon(D+ DProins Fror (D, an
where
R g F )
Fam(t)= -’L‘Lﬁ'— (1.8)
.pkml,n‘l= k"+1 (1.9)

Knat &n(ll)

and a,(R) is an estimate of a(R) based on X;,, X, The Bayes risk of
H n+1 is given by

R*'(H p1,@) =E [ (H pu1 ()-F pu1 ()*dW(0)
= [ (E(H p1(8)-F oy (2?dW(0).

(1.10)

Empirical Bayes decision problem for estimating the distributuon function F .3
has been considered by Korwar and Hollander(1976) under the loss function given
by (1.2) given value of a(R). The value «(R) is interpreted as the “prior
sample size”. Therefore, the work of Korwar and Hollander is not fully empirical
Bayes in this point of view. Zehnwirth(1981) has given a consistent estimate of
a(R) in the one-way ANOVA setup and used it in his asymptotically .optimal

empirical Bayes estimate of F ,.;. We modify in section 3 Zehnwirth’s estimate
of a(R) for our empirical Bayes problem of unequal sample size components.
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2. Asymptotic optimality of (H n.1)
Let a,(R) denote a consistent estimate of a(R). ie. a,(R) ™ a(R) as

n—o_, The following lemmas are useful in proving asymptotic optimality of
{H n.1) given by (1.7).

Lemma 2.1.(Zehnwirth,1981) Let Fo, Fo: be given by (1.3), (1.8) and let E
be the empirical distribution determined by X;=(Xa, ~*,X &,). Then,

ECF;(DIF)=F(t) @2.1)
Var( £, (o1F,) = -FHOUZFi(0) 22)

oy al(~o tha((¢o))
EF{(0(1-Fi (0)= = Ry (o R)+D @3)
E F m(t)=Fo(2). 2.4)

Lemma 22. Let F o, (¢) be given by (1.8). Then limVar( F o (]=0.
Proof. From (2.1) and (2.4) we have
Varl Fo ()] =E[ Fon(£)-Fo ()1
-1 tl Varl Fi(9)].

Let p(r)=—LRalLE) yen by lemma 21,

Varl F;(9)] =EVar( F:(D|Fy+VarE( F;(DIF;

- k%EF.-(t)(l—F.-(t))+Var<F,-(t))
_ 1 _a(Cofa((t®) 1 _ | _a((-®,Dal ()
k; a(R)(a(R)+1) () (R (a(R)-D

- %+ =ty -
Therefore,

I :
Varl Fan(0] = B2 3 Lv —Lo)00 a5 nooo,
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Theorem 23. If a,(R) is a consistent estimate of o(R) based on
X, -, Xn, then the empirical Bayes procedure {H,} defined by (1.7)-(1.9) is
a.o.

Proof. Using the Lg-orthogonality of E(F p1(8)l Xpe1)-F pa1(¢) and
H pi()-E(F 1 () X pa1),

0 <R*'(H pe1,0)-R*"(a)
- IE[HH+1(t)- F o (012dW(e).

Since the integrand is bounded in t it suffices to show that
HmE[H pa(8)- F o (D)1?=0 for all ¢

From (1.4), (1.5) and (1.7)-(1.9),
Hapa(0- Fra(® =(1- pre) Fon (0% Dy Fror (8)
‘(1‘Pk..q)Fo(t)1Pk... Fn+1(t)
=(1- Pk Fm(t)-Fogt))
+(P kna= D knimt (Fo(t) = Fpup (8)).

Therefore,
ElH ni()- F o (12 SEl Fon(£)-Fo()12+2E Fon(£)-Fo (8]
+ E( bknalﬁ.l—pknol)z

It is clear that the last term converges to 0. The first two terms converge to 0
by lemma 2.2.

3. The consistent estimate of a(R)

Zehnwirth(1981) has produced a consistent estimate of «( R) given by

5 (R)z{o, if F<1
n k(F-1)7 if F>1

where F denotes the F-ratio statistic in the one-way ANOVA based- on the
treatments X, -, X» and the integer k denotes the common sample size for

(3.1)

each component.
This estimate has been used in Korwar and Hollander(1976) and Ghosh(1985)

for their empirical Bayes problems of equal sample size components. The estimate
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(3.1) based on the data of equal size is not directly applicable in our case. We
modify (3.1) for the use in our empirical Bayes problem where sample sizes

change.
Using the notations in one-way ANOVA let

L (Xy-X;0)?
= = g A g
W MSW“.-%,E Ko-n

MSp ¢ (Xi--X.)°

Bn= m, =1 n-1 ’
where
K,= ﬁ;kﬁ total sample size
=
1 -1
m,.=( & T) = harmonic mean of sample sizes.
Let
$ = MSB - man
" MSw W,
the F-ratio statistic in one-way ANOVA.
Define
0, if ¢,<1

“"(")z{m,.(@,,—l)‘l, if ®,>1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

as an estimate of a(R) based on Xj,, X,. Using Theorem3 and 4 (Ferguson

(1973)) and a law of large numbers for the uncorrelated random variables with a

bounded second moments we may state the following lemma.
In what follows we write a=a(R). Let
w=EXG r21
and
o?= VarX=uqs- u?,

(3.8)

(3.9)
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Lemma 3.1. Let W, be given by (3.2) with 2<k;<K, i=1,2,-,n. Then

Wa B —230% (3.10)
provided that
we=at | xda(x)<w. (3.10)

K, —_—
Proof. Let Y,-=J§(X‘-,-— X;.)% i=1,2~. Then the Y; are independent and by

(3.11) second moments of the Y; are bounded. Therefore,

L 3wi-EY) ® 0 (3.12)
Using Theorem 3 and 4 of Ferguson(1973) we see that
EYi= (k- D(— 5 0?). (3.13)
Combining (3.2),(3.12) and (3.13) we have
e I (3.14)

Since X2 >1 for n=1,2,~ (3.10) follows from (3.14).

n

Lemma 3.2. Let W, B, be given by (3.2)-(35) with 2<k;<K, i=12 - ,n.
Assume (3.11). Then

2

a+l

B,-mp'w, & as n —o, (3.15)

Proof. By the similar arguments in the proof of lemma 3.1., we see that

Ba- fl i);Var(?i.) P, (3.16)

n

)42, (316) becoms

Since Var( Xi.)=( T

a

\ .
-1 o 2 a n
Ba-[mit 500 21| 25) R o (317)
Also from lemma 3.1. we see that

ml [ Wa- (22727 ® o, (3.18)
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Combining (3.17) and (3.18) yields (3.15).
Theorem 3.3. Let a,(R) be given by (3.7). Then,

an(R) ¥ o(R) as n—o, (3.19)

Proof. Applying lemma 3.1., 3.2. to the numerator and denominator of

— -1 - _—L
mn(tn 1) B,,—m;,an
leads to (3.19).
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