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A Study of A New Statistic for Detection of Qutliers
and/or Influential Observations in
Regression Diagnosticsl)

Eun Mee Kang?
Abstract

A new diagnostic statistic for detecting outliers and influential
observations in linear models is suggested and studied in this paper. The
proposed statistic is a weighted sum of two measures; one is for
detecting outliers and the other is for detecting influential observations.
The merit of this statistic is that it is possible to distinguish outliers
from influential observations. We have done some Monte-Carlo Simulation
to find the probability distribution of this statistic.

1. Introduction for Diagnostic Measures

Recently a great number of research papers have been published on the area of
outliers and influential observations for diagnostic purposes, and there still remain
many unsolved problems.

It is known that observations of, in the opinion of the investigator, standing
apart from the bulk of the data have been called "outliers”. It is also known that
observations are judged as "influential” if important features of the analysis are
substantially altered when the observations are deleted. Note that Chatterjee and
Hadi(1986) emphasize that the meaning of "influential” should be clarified. Here,
"influential” means “influential on the estimate of 8”.
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A great deal of measures have been proposed to detect outliers and influential
observations for regression models.
Suppose the linear regression model can be written as

y=XB+¢ (1.1)

where y is a nX1 vector of observations , X is a nXp full rank matrix of
known constants, 8 is a pX1 vector of regression coefficients and ¢ is a
nx1 vector of randomly distributed errors such that E(¢) = 0 and V(¢) = Io*
In fitting the model (1.1) by least squares , we ususally obtain the fitted or
predicted value from y=X3 where B=(X’X) !X’y From this, it is simple
to see that

y=Hy (1.2)

e=y-y=(I-H)x (1.3)

where H=X(X’X)'X’is the hat matrix and e is the residual vector.

Note that ¥ is the perpendicular projection of y into the subspace generated by
columns of X. Since , H is symmetric and idempotent, the average of diagonal
elements h; of the hat matrix is p/n. Thus we determine a high leverage point
by looking at the diagonal elements of H and paying particular attention to any
design point for which h;>2p/n. We may say that if hy is large, the data point
may be considered as influential.

For a measure of an outlier, many authors have suggested the standardized
residuals r;

€

ri= m‘ (1.9

where s=v e "e/(n-p) . However, s* tends to overestimate ¢ when there exists
an outlier. For such case, sg? is a better choice as an estimate of ¢°, where
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s@? is the residual mean squares of n-1 observations after discarding the i-th
possible outlier case. Then we obtain the studentized residual r7},

. e;

T sV Iha 49

which is ¢-distributed with ( n-p-1) degrees of freedom.
A useful measure of influence which is called the Cook’s statistic

Di=(B- Bn) X X(B- Bw)/ps? (1.6)

is obtained by Cook (1977, 1979), where 1 (p is the least squares estimate of §

obtained by deleting k rows and k observations indexed by I from X and y ,

respectively. If there is a single observation deleted, Dy is written as D;. Cook

suggests that if observed D; is equal to or greater than F(p, n-1 ; a ) where a

is less than 0.5, then y; may be significant as an influential observation.
Andrews and Pregibon (1978) suggest a statistic using the ratio

__(n-p-K)siplX (nX
Rr= (n-p)s®1X "X an

for identifying subsets of k influential cases where X5 is obtained by deleting k
rows indexed by I from X. Small values of R; are associated with deviants and/or
influential observations.

For multiple outlier case Gentleman and Wilk (1975b) suggest @

Qk=RSSc" RSS... ’ (1.8)

where k indicates k outliers, RSSc is the residual sum of squares when the
complete set of original data is used to fit the specified model, and RSSm is the
residual sum of squares when the extreme observations are regarded as missing.
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We write the basic model
E(y)=E[ ﬂ =[§jn (19)

where X; is an (n-k) X p matrix which contains no outliers, and X; is a kXp
matrix which contains k outliers. From Little(1985), @ can be expressed as

Qk =an+Qk2 s , (110)
= g9 g3+ ) 'X1(X; Xl)'1X1 £1

where Q= 22’ 22, Q= 21 'Xl(X1,X1)_1X1' 21, and

=| €1 =(J-
e=[ §,] =u-my (1.11)
-[I-Hu -Hp EY)
“Ha 1oy [ )
Here, H; = X{X'X)'X; By Llttle(1985), it is not difficult to show that

Qr=(B-B) "X/ X1(B-B) (L12)
where B=(X1X1)'X) y1. Note that Q, with proper scaling factor fits in the

general scheme of normed influence measure discussed by Cook and Weisberg
(1982). Hence, if @k, has large proportion in the largest Qx the k observations

can be candidates for outliers, and if @, has large proportion, the k observations

can be influential observations.

2. Proposition of a New Statistic

For regression models, the standardized residual r; and the studentized residual

r; only serve to detect outliers, while such measures as Ay the Cook’s statistic

Di are only used for detecting influential observations. Such measures as the
Andrews-Pregibon’s Ky and the Gentleman and Wilk’'s @ may detect the
observations which are outliers and/or influential observations. However, in
practice we want to know which observations are outliers and which observations
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are influential. Statistics which can distinguish outliers from influential
observations have not been suggested.
As mentioned in the previous section @ is decomposed into Q and Qk,

where Q, mainly detects outliers and @k, mainly detects influential observations.
However, the magnititude of @k, and @k heavily depends on the unit of

observations. Hence, to make @ and @, scale invariant, under changes of
scale and non-singular linear transformations of the rows of X, we need to divide
them by some scaling factor. We propose the following statistic which is a
weighted sum of Q, and @, divided by some scaling factor

WQk=wQx,/(sf)+(1-w)Qk,/(sf) 2.1)

where w is the weight factor, ie. 0<w<1 and sf. is a scaling factor.

Now we choose an appropriate scaling factor for detecting outliers and
influential observations. The appropriate scaling factor we want to propose is
ks%p. It is clear that s¥/ks?%y is scale free and ks%p belongs to the most
frequently used types of scaling factor in the normed influential measures of Cook
and Weisberg(1982).

Note that when w = 0, WQ: becomes Q/ks%n which is similar to the

Cook’s Dy in the equation (1.6). When w = 1, WQ; becomes Q/ks%n which

is the sum of squares of the largest k residuals divided by ks%. Hence,

Qu/ks%n can detect k outliers. When w = 05, WQ. becomes Qu/2ks%n which

behaves like the statistic Q(it detects the same points as Q). However, the most
important point of this statistic is that as the weight changes from 0 to 1, it
can show the influential observations at first and then gradually changes to
outliers.

Next, it is of interest to compare the diagnostic measures with the proposed
statistic. The value of €k consists of two parts, the outlier part and the influential
part. However, Little(1985) shows that the value of Q¢ seems to be dominated by
the outlier part, Qx is categorized as a measure of detecting outliers in Table 1.
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According to Table 1 each of all the diagnostic statistics is some function of
ri, ri and hi And W@k can be represented in a similar form. When w = 0, WQ;

is hari, when w = 05, W@ becomes ri2/2 and when w = 1, W =

(1-hy)ri?

Using the formula (A2.1) in appendix of Cook and Weisberg(1982), these relations

are easily obtained.

Measures for detection
of an outlier

Measures for detection of

an influential observation

Proposed statistics

€

1. ri= l"hii

- e;

iz S(i)q 1-hy;

3. Q=s*i=styri?

2.

1. hji=leverage

2. D;= ﬁ(l ha) r?
R;i=(1-hu)( n,:?p

1. when w=0,
WQy=hari?

2. When w=05,
WQi=ri’/2

3. When w=1.0
WQx=(1-hy)ri?

Table 1.

Comparisons of measures for detecting an outlier

and/or influential observation

Table 2 shows the relationships among D; R; @ and W@ when the number of
outliers or influential observations are greater than 1. The second equation of Ry
is obtained from Draper and John(1981) where RSS¢ is defined in the equation
(1.8). As we already noted, when w=0 the WQ; looks similar to D; where the
numerator of the first equation is the equation(1.12), around w=05 it behaves like
@ and when w=1.0, the W@ is the sum of the scaled residuals.

Measures for detection

of an outlier

Measures for detection of
an influential observation

Proposed statistics

1. Qx =2 (I-Ha)'ea 1
S&e2 &2

+ g XXy X1) Xy el

2Ry =

D;=

(B- Bwp) 'X;X( B- B
DS

2.
(n—g—k)slemxml
(n -p)s?lxX "X 3.
=(1- 2 iRl

1. when w=0,
WQs = (B- B.(I))X X(b- Bp)
ksm
_ 2, (XX ) 'Xip &1
ksin
¥hen w=0.5,
__ &
WQk= 2%ksn
¥hen w=1.0
__ £ £
Wk ksin

Table 2.

Comparisons of measures for more than 1 outlier

and/or influential observation
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3. Example

Here we are interested in the maximum value of Wk, depending on k which is
the assumed number of outliers. for convinience, we may write this as max Wk
The statistic max W@ will now be obtained from the analysis of a set of 21
observations (x,y) which is similar to the data set given by Mickey, Dunn and
Clark (1967). Among the 21 observations, the only difference is (42,51) which is
changed into (42,35) in this paper. The reason of this change is that we want to
see some diversified change in detected points.

Case X y Case X y
1 15 95 11 7 113
2 26 71 12 9 96
3 10 83 13 10 83
4 9 91 14 11 84
5 15 102 15 11 102
6 20 87 16 10 100
7 18 93 17 12 105
8 11 100 18 42 35
9 8 104 19 17 121

10 20 94 20 11 86
21 10 100

Table 3. Age at First Work(x) and Gesell Adaptive Score(y)

The observations appear in Table 3 and plotted in Figure 1. A straight line
regression model is fitted to the full set of data and then to the 20 data points,
remained when each observation is deleted in turn. Our test statistic max WGk

is obtained where the scale factor (s.f) is ks"’m, and k is the assumed number of

outliers.

Table 4 shows the weights ranged from 0 to 1, the value of max W@k and the
deleted observation number. When the weights are small( 0<w<0.2), the number
18 is deleted. However, when the weights become larger (w2>0.2), the deleted

number changes from 18 to 19. The reason for this is that the residual for
observation 19 is too large than any others.

For the removal of two cases, the results are summarized in Table 5. The
results show that the deleted observations are varying with respect to w. It
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Figure 1. Plot of Example Data
seems that the (2,18) observations are most influential and (3,19) are outliers.

given 2ex WO deleted given nax Wo deleted
weights * |observation weights * |observation
0.0 2.609 18 0.0 3.108 2,18
0.1 2.480 18 0.1 2.881 2,18
0.2 2,942 19 0.2 2,653 2,19
0.3 4,750 19 0.3 3.012 18,19
0.4 5.208 19 0.4 3.694 18,19
0.5 6.341 19 0.5 4,376 18,19
0.6 7.474 19 0.6 5.161 3,19
0.7 8. 607 19 0.7 5.986 3,19
0.8 9.740 19 0.8 6.810 3,19
0.9 10. 873 19 0.9 7.635 3,19
1.0 12.005 19 1.0 8.459 3,19
Table 4. Detected Observation and Table 5. Detected Observation and
the value of max WQ, when One the value of max W@, when Two
Point Detection for Example data Point Detection for Example data

Table 6 shows the detected points when other statistics are used in this
example. In one point detection case, the detected observation is the number 19



Detection of Outliers and/or Influential Observations 75

when using the outlier detecting statistic @ r; and r;", while the number 18 is
detected by using the statistics of influential observations such as Dy R; and
the leverage h; From these results, the number 19 is the most outlying case
and the number 18 is the most influential and remote point which has been
already shown in Table 4.

For two points detection R; and D; detect the numbers 2 and 18 where @
detects the numbers 18 and 19. In Table 5 the results include these points and in
addition, when w > 05 , the points 3 and 19 are detected. Hence, we note that
the proposed statistic max W@ extensively shows the influential points and the
outlying points as w varies from 0 to 1.

Statistics Detected Points
19 (12.68)

Qx 18,19 (8.75)

R 18 (0.27)

d 2,18  (0.07)

D 18 (3.27)

! 2,18 (11.29)

ri 19 (2.79)

ri 19 (3.55)

hi 18 (0.65)

Table 6. Detected Observations for Exemple in Other
Statistics{the values of the test statistics for
detected points are given within the parentheses)

5. Concluding remarks

In practical regression situations, the outliers and influential observations are the
same, but very often they are different i.e, some points are influential outliers,
some points are influential but are not outliers and vice virsa. The proposed
statistic W@k is a composite statistic which can detect outliers and influential
observations separately, if they are different. When the detected points have both
influential and outlier properties, then the proposed statistic tells us that they have
both. Hence, we believe that it is very useful to use the proposed statistic in
practice. Of course, it is more efficient to use this statistic when the outliers and
influential observations are different.

Note that there are no serious probrems in computational cost in calculating
W&k The number of multiplications for all possible @ is proportional
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to (k?+1)n*/&! from the equation Q= g2'(J-Hz)'e; and the number of
multiplications for all possible W@ is proportional to 7(number of weight
points) (k%+1)n*/k!. Since the size of k is much smaller than the size of n, the
cost doesn’t make much trouble.

We have done some Monte Carlo simulation for simple regression cases to find
the probability distribution of max W@ and the critical values for testing possible
outliers/influential observations. Due to the limitation of pages in this paper, the
detailed results are not given.

The simulation results show that the distribution is skewed to the right when
the weight w is small and it moves steadily to the right hand side when w
becomes larger and it tends to be symmetric. The results also show that the
critical values are highly robust to design patterns in simple regression. We hope
to report some details of the simulation work in a separate paper later.
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