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I. Introduction

Myers (1990) argued that a Nash com-
peting equilibrium as a consequence of
local government’s behavior was Pareto
optimal, and so there was no role for the
central government in providing in-
terregional transfers. Local governments
make the set of optimal tiransfers to ob-

tain a preferred size of regional
population.
Hercowitz and Pines (1991) re-

examined Myers’ work using a dynamic
migration model with a costly mobility,
and demonstrated the necessity of the cen-
tral government intervention to obtain the
socially optimal population allocation.
When migration is costly, a decentralized
competitive Nash equilibrium cannot be
optimal. If there is only a small difference
in fiscal capacity between two regions, fis-
cally rich government has no incentive to
transfer resource to fiscally poor govern-
ment. If the difference is large, the former
will transfer some portion of it to the lat-
ter, but never the socially optimal amount.
In this situation, it is required for the cen-
tral government to intervene so as to
achieve the social optimum.

In this note we wish to discuss whether
there will be really no role for the central
government in a system of regions even if
there is no migration cost. For that pur-
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pose, we analyze the adjustment time
which is required to reach the goal
starting from an autarky market equilib-
rium in two cases, 1.e. the Nash competing
equilibrium and central government inter-
vention. It will be shown that the adjust-
ment speed with the central government’s
intervention is much faster than that of
the Nash competing equilibrium.

2. Social optimum

We assume that there is an economy
which consists of two regions. The total
economy’s population is assumed to be
fixed as N which is the sum of N; and N,,
and 1s homogeneous. Individuals are
assumed mobile freely between two re-
glons.

Preferences are defined by a strictly
quasi~concave utility function given by U;
=U(C;, Gi), where C; is per capita amount
of the composite good consumed, G; is the
consumption of local public good by an in-
dividual residing in region i(i=1, 2).

Each region has a producticn function,
Fi(Ni), where N; is the population of re-
gion 1, and it is assumed that F{>0, and
Fi<o.

Let the marginal rate of transformation
between the composite good C and the
local public good G be unity so that G; de-
notes the cost of production of local public
good in region 1. It is also assumed that
the local public good is pure and there is
no spili-over of G; across regions.

The social planner allocates C, G, N;(i
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=1, 2) to maximize the utility of a re-
presentative individual in region i subject
to the following constraints. The first con-
straint in (1) is that the utility level
should be equated across two regions to
ensure social stability. The second constraint
is national feasibility for all purpose goods.
The last constraint requires that all individ-
uals be located in a specific region.
The social planner’s problem is to

{Cl,Cz,Cr;I.l,a(L;}f,N.,Nz} U,=U(C,,G))

subject to

U(C,;,G.) —U(C,,G1) =0 (1)
Fi(Ny) +F2(N;) =N,C,—N,C,—
Gl‘—Gz= 0

N—Nl—Nz=0.

From the first order conditions for the
above problem, we have condition (2)
which is the Samuelsonian condition for
the supply of local public good in each re-
gion |

Usi

" Ua

where Uc;EaU/aCi, UGiEaU/aGi. This 1s
the familiar result that the sum of the
marginal rates of substitution equals the
marginal rate of transformation. The sol-
ution to (2) for G; determines how re-
gional output is divided between the com-
posite good and the local public good in
each region.

We have also a social net benefit con-
dition of migration which states that the
gap between marginal productivity of
labor and per capita consumption takes
the same value in each region :

Fi—C=F;-C, (3)

where F{=9F,/aN;(i=1, 2). Equation(3)
states that the net marginal benefit from
locating in region i(i=1, 2) must be
equated between regions for the purpose
of an efficient allocation of population.

In this model we have six equations (2),
(3), and three constraints in (1) for six

N =1, 1=1, 2 (2)

unknowns (C, G, N;;i=1, 2). A social
optimum solution for resource allocation
can be achieved when these conditions are
simultaneously satisfied.

3. Nash equilibrium of voluntary
local governments

Myers(1990) argued that when regional
governments, which are endowed with
relatively more resource-tax revenue,
voluntarily donate some of it to the less
regions, thus correcting the distorted in-
centive and deterring the inefficient immi-
gration. We use the same model as Myers’
(1990) except for the production function,
the sole input of which is the regional
population.

Local government i(i=1, 2) decides a
composite private good C, a public good G;
regional population N;, and resource trans-
fer from region i to j, Sy(j=2, 1) in order
to maximize a representative resident’s
utility function U(C;, G;) subject to equal
utility constraint between two regions, re-
gional feasibilities, and a given national
population for a given amount of inverse
transfer and local public good supply in
another region, S; and G; Local govern-
ment will be assumed to transfer re-
sources to another region in order to “pur-
chase” a preferred regional population size
(see Myers, 1990, p.114). Local govern-
ments determine the optimal population
size, and then transfer resources to
another region in order to keep up the
size. Therefore, the choice of regional
population size and the resource transfer
must be practiced jointly.

Local government 1’s problem is to

max.

{C1,GI,N}, Sy}

subject to

U(C,,G.) —U(C,G,) =0

Fi(N1) =G;—N,C,—S;+ S, =0,

Ii‘Z(NZ)_GZ_NICI_SZl+SIZ=07 4)

N—N;—N,=0,

GIEO, S]:ZO, and leo,

U1=U(Cl,G1)



for given G; and S;;. A similiar expression
holds for region 2.

By solving this maximizing problem si-
multaneously for the two regions we have
the following conditions :

a Samuelsonian condition in each re-
gion :

s
i UC:

N =1, i=1, 2, (5)

social net benefit condition :
Fi1—-Ci=F1—0C.,. (8)

Here we have seven equations, (5), (8),
and four constraints in (4}, for eight vari-
ables (C;, Gi, N, S;;i=1, 2) so that the
solution is only unique up to the difference
S=S,;—S;. We have no unique solution
for the interregional resource transfers. If
we consider possible transaction cost of in-
terregional resource transfer between two
regions, the best solution must be what
one region chooses zero transfer to
another region. The decentralized competi-
tive Nash equilibrium can be Pareto opti-
mal when conditions (5) and (6) with the
constraints are simultaneously satisfied.

4. A numerical simulation of -z
Nash equilibrium

We have known that Nash equilibrium
of voluntary local governments is efficient
by the strategic set (G; S;). From a dy-
namic point of view, we compare the sol-
ution of the decentralized competitive
Nash equilibrium with that of central gov-
ernment Intervention by a numerical simu-
lation, and discuss the policy implication.

Local governments can adjust the sizes
of their own residents through their in-
terregional resource transfers. This pro-
cess can be modelled as a simultaneous
game of public good supply and resource
transfer by the two local governments.
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1) Decentralized competitive Nash
equilibrinum

Suppose that the dynamic adjustment
equations of the strategic variables for a
decentralized competitive Nash game can
be written as

Gl = lx{G’KGz.t, Szm) - Gl.t}
S.12=ﬁ1{sfz(Gz,t, Sa.) = Sia} (7)
Gz= 2{G3(Guy Siza) — G‘z,z}

Su= ﬂZ{S%l(Gl.ts Slz,t) - SZl.t}

where G¥,, S%.(i=1,2 ; j=2,1) is an opti-
mal value of Gi, S;. at time t, respect-
ively, and A, (1=1,2) represent the
speeds of adjusiment, and the dot indi-
cates differentiation with respective to
time.

Alternatively, we may also formulate
the above differential equations in terms
of the following system of difference
equations :

Gl.t+l= Xl{G?(Gz.t; Szm) _Gl.t} +Gl.t
Siz+1=m{SH{Gat Sut) —Su.a} +Sn. (8)
Ga.t+1=4{G3(G1.6 Siat) —G21} +Gan
SZl.t+l =ﬂZ{S%l(Gl.t; Slz,t) _SZLt} +Sa

When we are dealing with discrete time,
the strategy variables will change their
values only when the variable t changes
from one integer value to the next. The
amount of the strategy variables of one
region in the (t+1)th period will depend
on the amounts of its own strategy vari-
ables and another region’s variables of the
preceding period t and the adjustment
speeds.

2) Nash equilibrium with central
goveroment intervention

Suppose that the central government in-
tervenes the adjustment process by keep-
ing an optimal value of S;; and S, i.e., Sy
and S, constantly. This intervention can
be done because the central government
has more abundant information than local
governments in real world.

The dynamic adjustment equations of
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local public goods can be formulated as

G1=11{Gf(Gz.x, SZI.!) —Gl.t} (9)
Gz=xz{G3(G1.t, sz.t) —Gz.t}

where S;;, S, is an optimal amount of Si,
Sz given by the central government, re-
spectively. The above differential equation
can be reformulated as the following sys-
tem of difference equations :

G1,1+1 = AI{G‘I(GZ.U Szx.t) _Gl.t}+Gl,t
Ga.r1=2{G3(G1,1, Si2) =G} + G

where 1, and 2, are the same adjustment
speeds as those of (8).

(10)

3) Comparison of adjustment speed
between two equilibriums

Here, it is assumed that a representative
resident’s utility function in time period t
is specified by a log-linear type, Ui;=a
logCii+ (1 —a)logGi+2(0<a<1), and
the regional production function in time
period t is specified as Fi,= AN/ (0<8<
1). For concreteness, we analyze those ad-
justment functions by a numerical simu-
lation. We assume here that the values of
the parameters are given as a=0.8, 8=0.
6, A1=1.2, A2=1.0, N=100, 11='{z=0.7,
and =, =0.8 over time.

In this case, socially optimal solution
and autarky market equilibrium solutions
are given as Table 1 (see Appendix for
the concept of an autarky market equilib-
rium). In a process of the decentralized
competitive Nash equilibrium, the reaction
functions of the two local governments for
the supply of local public good are labelled
G, and G; in Figure 1 for given values of
(S, Sa), ie., (0,0.3575). The crossing
point E is the Nash equilibrium when the
strategies consist of the supply of local
public good only. The reaction functions
for the interregional resource transfers
are labelled S); and S; in Figure 2 for
given values of (G, G,), i.e. (3.3688, 1.
1780). Because two curves are coincided
on the right hand side of S;;=0.3575, the (Sy,,
Su) pair have no unique solution. How-

ever, there is no doubt that (S,;, S;;) = (0,
0.3575) is the best one when we consider
possible transaction cost of interregional
resource transfers between two local gov-
ernments. It 1s certain that a decentralized
competitive Nash equilibrium with in-
terregional transfers is Pareto optimal.

Now, we wish to know what time path
of the solution of the dynamic system,
(8), starting from the autarky market
equilibrium in which G,=3.1059, S;;=0, G,
=1.4978, and S, =0, converges to the de-
centralized competitive Nash equilibrium
where G,=3.3688, S,;,=0, G,=1.1780, and
S21=0.3575. Table 2 summarizes the re-
sultant time paths of strategy variables
when the local governments react Nash
competitively. As shown in this table, the
process needs at least 15 time periods be-
fore reaching the Nash equilibrium.

On the other hand, if the central govern-
ment intervenes the process by keeping S,,
=0 and S,=0.3575 constantly, the time
paths of the strategy variables of the two
local governments formulated by (10) be-
comes one shown in Table 3. It is obvious
from Table 2 and Table 3 that the adjust-
ment speed with the central government’s
intervention is much faster than that
without intervention.

5. Concluding remarks

In this note, we examined Myers’ work
(1990) with a numerical simulation.

From a long-run point of view, we com-
pared the adjustment speeds to the desired
state in two processes, which were the de-
centralized Nash equilibrium and the cen-
tral government intervention equilibrium.
Because the latter process is much faster
than the former, we conjecture that the
latter case will be more desirable than the
former. Therefore, it is still required for
the central government to intervene in the
interregional transfers from a long-run
point of view even if there is no migration
cost.
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Appendix ; Autarky Market
Equilibrivm

Autarky market equilibrium implies a market
equilibrium in which each local government maxi-
mizes the utility of a representative resident un-
der the assumption of strictly no interregional re-
source transfers (see Sakashita, 1989, p.3). That
is, the output produced by each region is allo-
cated to the absorption of the residents and the
government within the region. Migration of
people is still possible in this equilibrium. How-
ever, local government i{i=1, 2) maximizes the
utility of its own residents, taking the size of
population in its region as given. The local gov-
ernment behaves myopically in the sense that it
ignores the influence of its behavior on migration.
The local government I's behavior is formulated
as follows :

max.

{C\,G1} U,=U(C,,Gy),

subject to

U(CZ,GZ) _U(C],Gl) =oy
Fx(Nx)—Gl—N1c1=0,
Fz(Nz)—Gz—NzCz=0,
N—-N;—N.,=0

(A.D)

A similiar expression holds for region 2. The
maximization problems for two regions yield the
following equilibrium conditions :
a Samuelsonian condition in each region ;
Ui

N =1,

Us 1=1,2

(A.2)
and the four constraints in (A.l) ; Six equations,
(A.2) and four constraints in (A.l), are suf-
ficient to determine the values of six unknown(C
#GulNi 5 1=1,2).

3.3638
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Gi(G3, Sn +3 0.3573)
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Figure 1. Reaction curves of G,,G;

Su(Su, Gy 2 3.3688)

\

S13($51,Cs ++ 1.1750)
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Pigure 2. Reaction curves of Sy3,S;
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Table 1. Social Optimum and Autarky Market Table 3. Time Paths of Strategy Variables in
Equilibrium in Cen&r‘al Goyemmem Intervention
(’;1 G2 Game(Su:O, Szl=0.3575>
Social Optimum 3.3688 1.1780 period t [e G2t
Autarky Market Equilibrium 3.1059 1.4978 0 3.1059 1.4978
1 3.3076 1.2757
Table 2. Time Paths of Strategy Variables in 2 3.3519 1.2074
Decentralized Competitive Nash Game 3 3.3639 1.1868
period t (e Skt [ Soie 4 3.3674 1.1806
3.1059 0.0000 1.4978  0.0000 5 3.3684 1.1787
3.1886 0.0000 1.3338 0.2154 6 3.3687 1.1782
3.2980 0.0000 1.2647 0.2820 7 3.3688 1.1780

3.3199 0.0000 1.2192 0.3246
3.3410 0.0000 1.2008 0.3387
3.3532 0.0000 1.1907 0.3468
3.3600 0.0000 1.1851 0.3515
3.3639 0.0000 1.1820 0.3541
3.3660 0.0000 1.1802 0.3556
3.3672 0.0000 1.1792 0.3564
10 3.3679 0.0000 1.1787 0.3569°
11 3.3683 0.0000 1.1784 0.3571
12 3.3685 0.0000 1.1782 0.3573
13 3.3686 0.0000 1.1781 0.3574
14 3.3687 0.0000 1.1780 0.3574
15 3.3688 0.0000 1.1780 0.3575
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