Geotechnical Engineering (한국지반공학회지:지반)
- Volume 9 Issue 3
- /
- Pages.61-66
- /
- 1993
- /
- 1229-215X(pISSN)
A Geostatistical Study Using Qualitative Information for Tunnel Rock Binary Classification 1. Theory
이분적 터널 암반 분류를 위한 정성적 자료의 지구 통계학적 연구 -1. 이론
Abstract
In this paper, the incorporation of qualitative(or soft) data, such as outputs of geophysical tests or construction experience which has so far been cumulated, was discussed for rock classsification. Geostatistics wart used for this research since the parameters for the design of tunnels are spatially correlated. In particular, indicator kriging technique, which is one of non -parametric approaches, was used. As a selection criteria for an optimal classification, the cost of errors was adopted and the binary classes were only considered for rock classification. In future, incorporating an appreciable amount of available qualitative data will be necessary in tunnelling projects in which quantitative data are scarce. In this respect, this research is of great significance.
본 논문에서는 암반 분류를 위해 물리탐사 결과나 그동안 축적된 시공경험 등의 정성적 자료의 사용을 고려하였다. 터널 설계를 위한 요소(parameter)들이 공간적 상관관계를 갖기 때문에 지구 통계학(Geostatistics)을 이용하였으며, 특히, 비모수적 (non-parametric)방법 중의 하나인 지시 크리깅(indicator kriging) 기법을 사용했다. 최적 분류를 위한 선택 기준으로는 오차에 대응하는 비용(the cost of errors)을 사용했으며, 암반분류는 이분적 분류에 한정하였다. 앞으로, 정량적 데이타가 절대적으로 부족한 터널공사등에서 비교적 많은 양이 존재하는 정성적 데이타의 이용은 절실하며, 이러한 점에서 본 연구가 가지는 의미는 크다.
Keywords