Abstract
A cause and counterplan of the increase in dark decay rate of$\varepsilon$-CuPc/PVCz photoreceptor which is consist of the carrier generation layer (CGL) of$\varepsilon$type copper phthalocyanine ($\varepsilon$-CuPc) thin film by an aqueous coating method and the carrier transport layer (CTL) of polyvinylcarbazol (PVCz) by spin coating, are studied in this paper. Electrochemical deposition of CGL was accompanied by an increase in work function of the aluminium substrate during the processes and the enhanced work function 5.3 eV rose above the ionization potential 5.16 eV of $\varepsilon$-CuPc. This resulted in the increased injection of holes from substrate into CGL and a fast dark decay rate. Improved photoreceptor, an electron-transport $\varepsilon$-CuPc/TNF photoreceptor, led to lowing of dark decay rate and increasing of photosensitivity. The carrier generation efficiency (ηg), carrier injection efficiency (ηi) and xerographic gain (G) of the $\varepsilon$-CuPc/TNF photoreceptor were obtained by XTOF method and PIDC.