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A Signal-Dependent Noise Model and
Composite Signal Detection
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ABSTRACT

When original signals are contaminated by both additive and signal-dependent noise, the test statistics of locally opti-
mum detector are obtained for detection of weak composite signals. [n order to consider the non-additive noise as well
as purely-additive noise, a generalized observation model is used in this paper. The locally optimum detector test
statistics are derived for al! different cases according to the relative strengths of the known signal, random signal,
and signal-dependent noise components. Schematic diagrams of the structures of the locally optimwn detector are
also obtained.
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1. Introduction

The purely-additive noise (PAN) model has been
widely used in various areas of signal processing
including signal detection problems, because the
PAN model is relatively easy to handle math-
ematically and to obtain explicit structures for
detection processors in a vartety of applications
[1-5]. In addition the PAN model produces quite
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acceptable and reasonable resuits in many cases,
where the level of the contribution of higher or-
der statistics or of nonlinearity is not significant.
There are some other cases, however, in which
we are forced to use a non-additive noise model to
produce more realistic and reasonable approxim-
ations [6-9). For example, the effects of delayed si-
gnals from multipath or reverberation phenomena
and the actions of automatic gain control circuits
or of nonlinearities acting on additive signal and
noise components may all be modeled using non-
additive (e.g., signal-dependent or multipliicative)
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as well as purely-additive noise components, A
specific example of non-additive noise may easily
be found in image processing:whcn. mages re-
corded on the photographic film are digitized for
processing by digital computer, they may be con
taminated by the film-grain noise, which is a kind
of signal-dependent noise,

In | 13] LO detection of weak compostte signals
in purely-additive noise was studied, in which the
test statistics and performance of 1.0 detectors
are obtained. LO detection of weak composite si-
gnals in additive and multiplicative noise was con-
sidered in (111].

The purpose of thes paper is to obtain the test statistics
and performance characteristics of the 1O deieclor for dete-
chim of composite signals i a stgnal depemdent notse -
del. The results presented in this paper are there-
fore generalizations of those obtained in [ 10,12
and complements to those obtained in [11].

II. The Observation Model

2.1. The model
The widely-used observation model including
P AN only may be described by

Xi=00i + Wi, i=1,2 -, n @2n

where 6 is a signal strength parameter, Q; is ei-
ther a known or a random signal component, and
W; is the PAN component, It is normally assumed
that the PAN component W; and the random sig-
nal component are statistically independent,

Let us now consider a more general and re-
alistic observation model which may be used in a
broader range of situations. Let us consider the
model describing the ohservations X; for { = 1, 2,
., by

Xe=oalt)e+ B8(2)S;+Y(IN+ W, (2.2)
In {2.2), & is the known signal component and

S; 1s the random signal component with known

probability density function {pdf) at the i-th sam-

pling instant. The random signal component &; is
a zero mean random varnable which has variance
o and pdf f..{=1.2 - »n The functions a{t)
and g(1) are the signal strength functions of the
known and random signal components, respect-
ively. The term (1) ¥; is a signa!-dependent noise
term with amplitude ¥(t), where the parameter ¢
also controls the signal strengths through a(7)
and #(¢). We will assume that al7), #(z), and ¥{1)
are nondecreasing functions of 2> and that a(0)

S0=r{0}=0. The signal-dependent noise se-
quence |N;i, | and the PAN sequence {W,!}. are
assumed to be zero-mean ndependent and identi-
cally distributed {i.i.d.) random variable sequences
with univariate pdfs fv and fu, respectively, It
is also assumed that {;}] | and {W,}) | are inde-
pendent of {5;17.,. Finally we will denote by f
the common joint pdf of the {N;, W, }. which are
i.i.d. bivariate random variables for =1, 2, +--, n.
The pdfs f«, fxw. fv. and fy are assumed to be
smooth enough to satisfy regularity conditions
[1]) so that interchange of intergration and limit
15 justified.

2.2. Hypotheses and definitions

With the observation model (2.2), it is now
possible to express our problem of composite sig-
nal detection by a statistical hypothesis testing
problem of choosing between a null hypSthesis H
and an zlternative hypothesis H,. More specifi-
cally, under Hy we have t=0or

Hy: X =W, t=1, 2, H, (23)
and under &, we have t>0 or

H X, =alt)e+ 8(0)S;+ YN+ W,
i=1,2 50 (2.4)

Before we proceed further with the hypotheses
(2.3) and (2.4}, let us introduce some definitions
for use later in this paper. Let us first define the

LO nonlinearities as
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__Swx) .
alx)= Fuln) (2.5)

. u{x)
glx)= Fwlx) {2.6)

= fulx)
hix)= Ful) (2.7)
and
Mt}
halx) = fw(X) . (2.8}
where
u(x)=[n faw(n w) dn

= fw(x) EIN|W =x} (2.9)
and
v(x)=[n? faw(n w) dn

= fulx) EAN|W = x} {2.10)

are the weighted conditional mean and weighted
conditional variance functions, respectively.

2.3. Reparametrization of the model

Because of the assumptions on af{z), 8(1), and
¥(1) that they are nondecreasing functions of t>0
with values () at =}, we have

af1) _

lim <25 =1, (2.1}
im 29 1 (2.12)
—0’ ETO

and

tim 2y, (2.13)
=" AT

where p, g4, 7, 8, £, and g are all positive numbers.
With the numbers defined by (2.11)-(2.13) let us

define two parameters A and A. as follows:

A1=

g (2.14)
v

(2.15)

Reparametrization of the observation model (2.
2} 18 accomphlished by applying one of the follow-
ing three rules :

A)a(8)=8, b(8) =g(1), c(8)=7¥(1) with 0 =al1),

B)o(9)=6. c(@)="7(1), a(8)=alr), with ¢ =8(r)
and

Clc(#)=0, a(@)=alz), b(8)=8(1) with 8=7(1).

Application of a specific reparametrization rule
among the above three rules is determined ac-
cording to the values of A; and A; as follows :

Case 1: When A, < 2,

iYWhen A, <1. we apply reparametrization
rule A},

ii }When A; 22, we apply reparametrization
rule C).

iii}When 1 <A, <2, we apply reparametrizat-
ion rule A) if F{N|W}=0 and reparam-
etrization rule C) if E{N|W} 0.

Case 2: When Ay > 2,

i YWhen Ay = 2A),, we apply reparametrization
rule B).

ii 'When A»< A, we apply reparametrization
rule C),

il YWhen A; < A, < 2A,, we apply reparametriz-
ation rule B) if £{N|W}=0 and reparam-
etrization rule C) if E{N[W}# (.

In the obhservation model after the reparam-

etrization, the observation X; 1s represented by

Xi=a(@)e,Fb(8)8: F+ ()N +W;, (2.16)

where at least one of the threec ampiitude fun-
ctions a{@), &(#), and c{6) is 6.
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. Detector Test Statistics and Structures

3.). Test statistics
Because the noise components dre assumed (o
be independent of the random signal components,

the joint pdfs of the observation set are

Sola)=1 | fau (, ) dny (3.1)

i

under Ay and

S ={ ft8) I [ Fow i, xi=alB)ei=b(0)s,
—c(8) w) dn, ds (3.2)

under H,, where fs is the joint pdf of 5, S5, -,
Sey 8={8], Sev ... 80, and x=1(x, ¥, ..., Xnl.
Applying the generalized Neyman-Pearson lemma
L1], we get the test statistic of the LO detector,

!’_,“”(x) |(‘-.=(]

7o) (3.3

Trolx)—

where ¢ is the first non-zero derivative of f{x)
at #=1{):that is, v is defined by

d filxl;

do ||i U=U' ARLE R e (3.4)
and
& fi{xl)

a0 =0 (3.5)

Using (3.3) the test statistics of the [LO dete
ctors for the observation model {2.16) are obta-

ined to be as follows :

1}When A; <2 or when A»>=2 and AfAx > A /2.
the test statistic 1s
Tl XV =3 teh(X) + Al X)), (3.6)

=

2)When A:z?2 and A /A, < A./2, the test stat

tstic is

XY TV K H@XDg(X))
el

Y et N F e (X)) AN (3.7)

In {3.6) and (3.7}

S
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5— £i{x), when Ar<2and A <A,

Nix) =
0, otherwise (3.8}
and
2n sl e
E_ g{x), when LFIN|Wi#0and {4, A) €L,
Aolx) = [ o _ _
pe filx), when EAN|Wi=0and (A, A €T
0. otherwise (3.9
with
U={(A, 82} 81280, A A2 Z A f2) (3.10)
and
L. when EiN|W1#0,
A‘. ==

2, when FINIW =0 {3.11)

A dctailed derivation of the LO detector test
statistics (3.6) and (3.7) is shown in [13]. The
results (3.6) and (3.7} are in detail tabulated in
Tables 1 4.

From (3.6) and (3.7} or from Tables 1-4, we

can make the following observations :

{a) When A.<?2 and A< A,, we observe that

the LO test statistic is exactly the same as the

Tabte 1. The Locally Optimum Detector Test Statistics .
When EIN|W 1 #0and A, <2

Ae<2

A<l f\.’_‘le,-g.(x.)

A=1 TlesnX)+ ] ga(xo)
A1 © ()
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Table 2. The Locally Optimum Detector Test Statistics:

When EINIH I =0and A,<2
oM
A< : g (X))
1 | S }?g;ﬂ,& RO

known signal LO detector test statistic [1].
When A;>2 and A;/A: <A:/2, on the other hand,
the LO detector test statistic is exactly the same
as the random signal LO detector test statistic
[2]. When A; > Ac or when A /A;> A /2 the LO
detector test statistic has only one term which
represents the effect of the signal-dependent no-

23

ise, It is observed that when A; <2 and ‘Al:Ac,
when A;>=2 and A /A, < A /2, or when A» > 2 and
A /A»=A,/2, the test statistic is a combined form
of two or three of the above three test statistics.
For example, when £{NIW }#0, A, =1, and Ay =2
{e.g., (p,q,7)=(2,1,2)}) or when E{N|W =0, A,
=1, and A;=2 {e.g., (p.q,7)=(2,1,1)}, the kn-
own signal components, the random signal com-
ponents, and the signal dependent noise compon-
ents all have effects on the test statistic.

(b) The critical value of A., from which we can
say whether the known signal components are
dominant or the random signal components are
1s 2. In other words, when A, <2 the
known signal components are relatively strong,

dominant,

and when A;>2 the random signal components

Table 3. The Locally Optimum Detector Test Statistics :

When E{NIW } #{0)and A; =2

A =2 A>2
av2s | BT KD @xg(X _'»: Kl 7) 81X g (X )
+ 3 forh(X + o 25 & 2i(X.) +;::azh.(,\)
_A_e ;2_,,1 __."itfﬂj:ﬁ.(x.)g.ix» }:Z Ksli, ) g1 X0g (X))
+;hﬁhM)+ = eaiX) + zgu); +§ ﬁmun+£_&w“
N e (s

Table 4. The Locaily Optimum Detector Test Statistics :

When FINIW=0and 4,22

A2

A2='2
LYW ;:‘;IR\{! e X)g(x;)
. 28
+3 lath (X)+— e g (X

3.7Jg|l’ﬂ D& {X;)

Ay = Ay 4‘::"‘

A< A

e.gI(x.J + L ¥

ZY- K 7)) (X)X,

any

+ \,"* o2 (X:)

\_" h (1])g|(\’)g11,\ )

"“a, mexo+ 1o
£’

}_h‘(\)
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are dominant over the known signal components,
When A;=2 both the known and random signal
components have effects on the LO detector test

statistic,

3.2. Structures of the locally optimum detectors

Let us now show schematic diagrams of the
structures of the LO detectors obtained in Sec
tion 3.1.

3.2.1. Case 1:When A; <2 or when A; =2 and
AfA> A2
A block diagram of the structure of the LO de-
tector in this case is shown in Figure 1. The
structure of the LO detector 1n this case s almost
the same as that of the LO detector for known
signals in the P AN model.

i,
A.0) b
e R T
X. T >t
-
inn
A.(+)
Ne
b M

Figure 1. A Black Diagram of the Locally Optimumn De
tector
When A-<2 or When A, =2and A, /A, > A, /2

3.2.2.Case 2 : When A;>2 and A A< A /2

Let us first assume that the random signal
component 15 a white random process ;that is,
K77} - 0 for i#7. Then the LO detector test
statistic of (3.7) can be simplified as

T,‘_rt(.\') - : 20’[2’21(,\':) "+' L’rll(Xi) + LZ(.X:) } . (312]

for which a block diagram of the corresponding
[0 detector i1s shown in Figure 2. The functions
Alx} and A:(x) in {3.12) arc defined in (3.8) and
{3.9), respectively.

rolh, ()
et 3,
“l Yos
Tie
x., af0) ~g‘ T >
- fon
b I,
Ly 1,(-)—.?—

‘.

Figure 2. A Block Diagram of the lL.ocally Optimum De-
tector
When A; 22 and A, fA;< A, /2 for White Ran-
dom Signal Components

| &) el H () [ ()
Y
H,
( )’ Yes
- ’ y A Tw
S *>é) > - =
1 = inn
ol
= Ad Y
No
Ho
! 4. -) >%

€,

Figure 3. A block Diagram of the Locally Optimum Detector
When‘a?_z‘z and A, /A< A, /2 for Correlated Random Signal Components,
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Under the assumptions similar to those in |10, 1

can be shown that

i
Fi=

Tl X)== ¥ 1Y (X oy I2
P
+3 (o2t XD — X e (X + xel X)),

(3.13)

for which a structure of the corresponding LO de-
tector js shown in Figure 3.

IV. Conclusion

In this paper, we derived the locally optimum
detector test statistics for composite signals in a
generalized noisy signal mode! with which we can
consider composite signals and signal-dependent
notse, Under the observation mode) we investigat-
ed the effect of the signal-dependent noise as well
as that of the additive noise on the test statistics,

It was shown that the ratio of the decay par-
ameter of the signal-dependent noise strength to
that of the known signal strength together with
the ratio of the decay parameter of the random
signal strength to that of the known signal str-
ength were important fictors in determining the
locally optimum detector test statistics. Structu-
res of the locally optimum detectors were obtained,
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