퍼지화 영상데이타의 일치도연산에 의한 3 차원물체의 식별

Three-Dimensional Object Discrimination by the Similarity Measures of the Fuzzified Image Data

조 동 욱*, 김 지 영*, 유 홍 균**
(Dong Uk Cho*, Ji Yeong Kim*, Heung Gyoon Ryu**)

Abstract

Fuzzy theory is utilized in recognizing 3-D objects from input range data through feature extraction. Shape features are extracted from the Z-gradients and geometric features are extracted from the normal vectors of the surface patches. Then feature data are fuzzified to get similarity measure, which is used to perform matching operation bet ween the prototype objects and the input scene object. Finally, the effectiveness of the method is demonstrated through various experiments.

요 약

 훅기올기를 이용하여 험싱특징옥 추출하고, 각 표번조화에서 억선베터롤 구해 기하하적 독징을 추출한다. 그 후 위에서 두 한 특짐들을 퍼시화제이타로 난올어 일치도 연산에 의해 파순 돈체아 입닉화삼 뚥체 사이의 정합을 수행한다. 최좀석으로 변 논구: 의 유툥싱율 실헙에 의헤 인중하고자 한나.

I. Introduction

As one of the grand human objectives, to make a machine to perceive and recognize the objects and their environments to the level of human being has been drawing much attention and research as the potential application areas of computer vision seem to be limitless. Automatic inspection of parts in factories, recognition of car number plate.. X-ray image processing, and tar-

[^0]** : 총북내학포 전자몽학겨
접수인자 : 1992년 11월 17월
get tracking, $A L, V$, etc. are some of the areas in which computer vision is making remarkable progress[1]-[3]. Recent efforts to overcome the limitations of 2-D image recognition such as occlusion processing, distinction between curved surfaces and planar surfaces, lead to some noticeable results in 3-D image recognition[4]-[6]. In this paper a method is proposed to discriminate 3 -D objects using the range data input.

The Z-gradient from the input range data is used to extract the shape feature of the object and the intersecting points of the normal vectors to the surface patches are used to extract the
geometric features, such as the axis equation. Also the features such as the intersection angles and distances are used to establish the relationship among the surface regions. In the discrimi nation process, the existing method determines the confidence level of the numerical data and performs matching operation with the prestored prototype objects. In this case. false recognition occurs when the confidence interval is inappropriately set. Hence the confidence value is decided roughly after some trial and-error processes.

However, humans discriminate objects by setting some conceptual confidence interval which is raturally fuzzy.

The recent trends in computer vision shows the frequent application of the fuzzy thory[7] - [9]. For example, through the use of the fuzzy theory, better results are shown in the recognition of two-dimensional human face images $\{7\}$ and hanguel character recognition $\langle 8\rangle$.

In the 3-dimensional computer vision, to over come the difficulty in finding the correspondance in the stereo images the fuzzy theory is also applied[9]. However, the application of the fuzzy theory in the previous works and limited to 2-dimensional image recognition or to get the range data. In this paper, the fuzzy theory is tried in the discrimination process for 3 -dimensi onal image, which is considered to be vital for the realization of truly versatile computer vision sys tem.

The same buman nature is utilized and fuzzy theory is adopted in the object discrimination. Similarity between the prototype object and the input scene object is measured by the min-max operation on the degree of match between them. Additionally the weight of each feature is included in computing the final confidence levels.

[I. Feature Extraction (10)

In this paper according to the Z -gradient values the shape features of the objects are classified
into the combinations of sphere. cylinder, cone, plane. then the intersection points by normal vectors are used to extract the geometric feature of each surface region and the features such as the intersection angles and distances are used to establish the relationship among the surface regions. The edge surface direction map, inner surface direction map and equ-magnitude contour of the Z-gradients furnish the necessary primitives.

Directional value in the direction map is direc tional change in the depth value taken from $2 * 2$ mask as show in figure 1.

Fig 1. Drection of the Z-gradient

For example, since the image of a cylinder taken from the front has 4 directional measures. Λ E. C and $G, 4$ relations of 180-degree, 1 relations of 90 -degree and no relations of 45 degree.. Therefore the flag value is 440 . Fig. 2 shows the example of the various primitives. Nso the kernel points are defined and the clustering operation is performed. The planar equation of $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$ of the planar surface is obtained from surface patches. The geometric features of sphere, cylinder and cone are extracted from the surface patches through normal vectors $\mathrm{Vp}=$ ($\mathrm{Xo}+\mathrm{At}, \mathrm{Yo}+\mathrm{Bt}, \mathrm{Zo}+\mathrm{Ct})$, From the intersection points of the normal vectors, the center point for a sphere(point), the axis equation for a cylinder and cone (line) are computed and used to estab lish the relationships among the surface regions as shown in Table 1.

CYLINDER

SPHERE
(b)

Fig 2. (a) Edge surface direction map
(b)Inner surface direction map

Table 1. Relations of the surface regions

Combinations of features	Extracted features
point . point	distance
line . line	intersection angle
point , line	distance
point , plane	distance
plane , plane	intersection angle
plane . line	intersection angle

II. Discrimination Procedure

To discriminate the objects the existing method performs the matching operation by comparing the numerical feature values. In this process the determination of the error value is done by trial and error, which is one of the reasons leading to false recognition. In this paper we utilize the fuzzy theory in matching process to overcome the limitations of the existing method, i.c. the similarity measure is computed by the min-max operation and confidence interval is determined in consideration of the weight for each feature.

1. Formulation of Fuzzified Data
 1) Scaling

To recognize the object regardless of its size and to get the fuzzified data, the scaling operation is performed using the following equations :
$T=\sum_{i=1}^{n} P$,
$S P_{j}=\frac{P_{1}}{T}$
where T is the sum of the areas of all surfaces and SP, is the normalized area of the surface region P_{j}.

2) Expression of Fuzzified Data

Among the various methods available to represent fuzzified data, we use triangular form which embodies human concepts very well and is computationally simple. Also one study shows that

Fig 3. Magical Number
when we express our absolute feelings it is done in the levels of magical number seven[8]. We adopt seven levels in expressing the scaled area of each surface region as shown in ligure 3 .

Where NL is a Negative Large, NM is a Negative Medium, NS is a Negative Small, ZR is a Approximately Zero, PS is a Positive Small, PM is a Positive Medium \& PL is a Positive Large. For example, the membership degree of $Z R$ of the scaled area is expressed as follows:

$$
\mathrm{A}=(0.33,0.5,0.67)
$$

$$
\begin{align*}
\text { where } \mu_{A(x)} & =0 & & , X<0.33 \\
& =\frac{X-0.33}{0.17} & & , 0.33 \leq X \leq 0.5 \\
& \ldots 0.67-X & & , 0.5 \leq X \leq 0.67 \tag{3}\\
& =0 & & , X>0.67
\end{align*}
$$

Among the relationships between surface regions, the fuzzification of the intersection angles is done by coding process to the direction of 18 , which the same angle of 10 degree. Here an 18 -step fuzzy number is obtained by dividing 180 degree of maximum possible intersection angle with 10 degrees. Also to obtain the fuzzified data of the distance is done according to expression (4) and the triangular fuzzy number for the normalized distance value is formulated within the limits of ± 20 from its own value.

Less values of area sum between prototype \& mput Greater values of area sum between prototype \& input (greater distance value between prototype \& input)

2. Discrimination Process

1) Determination of Dominant Primitive and Ratio

We discriminate an object by taking the dominant shape out of it. We call the primitive formed by the dominant shape of an object, the dominant primitive (DP) and the ratio of the DP for each object the DP ratio (DPR), the expression of which are:
$D P=\max \left(P_{1}, S_{j}, C Y_{1}, C_{1}\right)$
$\mathrm{DPR}=\frac{\text { area of } \mathrm{DP}}{\text { Area of Surface Region }} \times 100$
Where $P_{1}, S_{1+} C Y$ and $C_{\text {, }}$ represent the total areas of planar surface, sphere surface. cylinder surface and cone surface, respectively.

2) Discrimination Procedure

Figure 4 shows how the discrimination is done on an object.

Fig 4. Flowchart of the Discrimınation Process
3. Computations of the Similarity Measure \& Confidence Level

Next step is to compute the similarity measure between the images of the prototype and the input scene objects. The similarity measure is the degree of match between prototype and input object. Existing method relies on the simple comparision of the corresponding numerical data. the results of which usually do not reflect true likeness correctly. To improve results we introduce the fuzzy theory, which best assimilate hu man mind in discriminating the objects as small, medium, big, etc. In this paper, first the numerical area data of the prototype and the input scene objects are scaled, then the triangular fuzy numbers are computed to get the similarity meas. ure between prototype and input.

Next, the min-max operation is performed as shown in Figure 5 to get the similarity measure between the surface region area values of the prototype object and the input scene object.

Fig 5. Example of Similarity Measure Computation

Also humans discriminate the objects by taking the dominant shape from the object into consideration. To emulate this human's object discrimination process, the computation of confidence level values according to the size of object area is performed such that the dominant shape feature is to influence toward the higher confidence level for the corresponding image area.

Hence, the confidence level value of object is computed as.

$$
\begin{gather*}
=\sum(\text { Scaled value of each surface region }) \tag{7}\\
\cdot(\text { similarity measure of } 0 \sim 1)
\end{gather*}
$$

Even though several objects are formed by the same shapes of the same sizes, they must be distinguished if they have different intersection angles and distances between the surface regions of the shape features in them. To accomodate this difference the similarity measure is computed between every adjacent surface regions. This is done by the min max computation if there are object which exceed TH1 value as shown in Figure 4. At this time since it is not necessary to consider the weights for the intersection angles and distances, only the mean value of similarity measures are computed and the final decision about the discrimination is made at the object which has the highest confidence level value.

V. Experimental Results

To test the effectiveness of the proposed method, experiments have been performed with the C language program run on an IBM-PC / AT computer. (a) of figures $6 \sim 9$ show the synthetic range data for the prototype objects and (b) of figures $6>9$ show their direction maps. Also (a) of figures 10 and 11 are the input synthetic range data and those of (b) are their direction maps.

Fig 6. (a)prototype range data of the plane, cup $\&$ dumbell
(b)direction map of the plane. cup \& dumbell

（a）

（b）

Fig 7．（a）prototype range data of the globe （b）direction map of the globe

（a）

（h）

Fig 8．（a）prototype range datat of the liquid \mathbb{X} thermobottle
（b）direction map of the licued \＆thermotbot te

（a）

（13）

Fig 9．（a）protorype range data of the toy \＆tumbling doll
（b）direction map of the toy \＆tumbling doll

（a）

（b）

Fig 10．（a）input range dara of the dumblell $\&$ tumbling doll （b）direction map of the dumbbell $\&$ tumbling doll

（a）

（b）

Fig 11. （a）input range data of the toy K thermo－botke （b）direction map of the toy $\mathcal{\&}$ thermo－buttic

Table 2 represents the feature values of the prototype objects which are the DP and DPR computed using expressions（5）and（6）after extracting the shape feature of the object by 7，gradient．In the discrimuation process to re duce the search time the largest area surface re gion is chosen as the kernel，the values of which are in＂primutive＂column．The area and the cor responding scaled area values are in the＂area $\&$ its ratio＂column．

Table 2．Feature values for the prototype objects

whect	1）小，吠成\＆	Pronutise	area \＆	Pratures lxt werell
natue．	lieroul		Hs falw	i sarade repinas
plater：	Ihante	｜platel		
	Inal	｜		
	Hadmil			
cup	cylinder	Culmider		
	liki			
	（ y lurderl			
diamble： 11	${ }_{\text {apher }}$	a xiblert		（10）
	\％	crinderl		4583
	spherear	\％sphere＇s		131．354
gluhe	sphere	；spherel		ATst
	\cdots	－Cortel		II． fin if
	Yihurel	：ylurderi	1．743．40963！	焐埧
lequerd	peyhnder	cylnderl	2 CH	
	110\％			（1）＇xil？
	－3ilinder＇？	cylinder：		
thermor	crinder	cylinderl	－ $2741 .(42463)$	
bottle	X 3	conel	$\mathrm{i}^{\text {a }}$ S64．73172！	（1）．430，
	＂3lisuter＂	（ylinderis		
（t）	criondel	sphorel		｜19，39\％
	ij			
	Clumderl	［＇visucter］	1154.15	
turnblaris d． 11	sthere＇	！spherel		
	IAM）			
	Wheere？	isphere：2		

너지화 영상데이타의 알치도연산예 의 하 3차원눌채의 삭변
Also shown are the relations of the surface regions(refer table 1) in the column of "feature between surface regions," The values of table 3 is computed for the input scene object in the same way as for table 2 .
Table 4 shows the similarity measures and con fidence level values between the images of the prototype and the input scene objects computed by "magic number 7 " triangular fuzzy number from table 2 and 3 scaled area values.

The similarity values are obtained by the min-max operation and the confidence level values are computed by expression(7) to give different contribution by the area size. In the "similarity measure" column of table 5 , the geometric feature values between surface regions are fuzzified and the results of min-max opeation on the prototype and input scene objects are shown. Meantime, the confidence level values are the arithmetic means of the similarity measures among the surface region.

Table 4 and 5 show that the objects (dmbbell. thermo-bottic) properly scaled to the sizes of prototype objects give higher similarity and confidence level values, while the objects, eventhough they are the same shapes as the prototype objects, display lower values. This is analogous to human perception, in which discrimination process becomes hesitant when there is disparity in the sizes for the same shape objects.

Table 3. Feature values for the input objects

object no	DP.DPR \& kernel	Primutives	area \& ths ratio	features between surface regions
1	sphere	spherel	1.664 .2195040	38, 8 : 77
(dumbtell)	80	cylinder I	$7609 .[26500]$	44.352
	spherel	sphere\%2	15522, 50004	174.954
2	sphere	spherel	7740,946940)	
ttumbling	100			85.0 (1)
doll)	sphere2	sphere2	11725.932 6001	
3	cylinder	spherel	$7265.520(22)$	
(toy)	78			47.427
	cylunder 1	cylinder 1	$26363.870(78)$	
4	cylinder	cylinder 1	2023.489(5)	0.4723^{\prime}
thermo	84	conel	$6737.832(16)$	0.5194°
bottle)	cylinder?	cylinder2	. 3150.091 (79)	0.436 ${ }^{\circ}$

Table 4. Results of simularity measure $\&$ confidence level value for each surface regions

Object Name	Similarity Measure	Confidence level Value
dumbbell	1.0	
tumbling	1.0	0.8
doll	0.5	0.5
	0.5	0.5
toy	0.5	0.5
thermo	1.0	
bottle	1.0	1.0
	1.0	

Table 5. Results of similarity measure \& confidence level value arnong surface regions

Object Name	Similarity Measure	Confidence Ievel Value
dumbell	1.05 	0.975
1.0	0.975	
tumbling	0.3	0.3
doll	0.95	0.95
toy	1.0	
thermo	1.0	1.0
bottle	1.0	

V. Conclusions

The similarity measure by the min max operation of the fuzzy theory is introduced in the 3-D object discrimination process. To overcome the limitation of the existing method, the features are normalized and the weights are set in computing the confidence level values. In this work, only 4 major primutives and areas are considered, in which very good results are shown.

So, it is necessary to extend this study to other objects by increasing number of primitives and applying the methods other than area consideration to extract better geometric features.

Also it is well-known that for the complex
shape objects. the shape feature extraction, geo metric feature extraction and feature extraction among surface regions are the open areas for further research. Finally we are grateful for In Ho Lee \& No geon Kwak for their fine word processing job.

Referencs

1. L.O. Hertzberger \& F.C.A. Grown, "Intelli gent Autonomous Systems." North-Holland. pp. $459469,1986$.
2. T.C. Henderson, "Efficient 3 D Object Represen tations for Industrial Vision Systems," IFEEE Trans. on PAMI, pp.609-618 VOL.5, No.6. November, 1983.
3. D. U. Cho \& J.Y.Kim, "Recognition of Automobile Type \& Extraction of Car Number Plate by Image Processing," $1^{\text {st }}$ Korea-Japan Joint Conference on Computer Vision, pp. $230-233.1991$.
4. B. U Choi, "Fundamental Study on 3-D Image Processing \& Recognition, " KOSEF Final Report, $890113,1992$.
5. R.Chellappa et al, "Shape from X," First Inter national Conference on Computer Vision, pp. 118-144. 1987.
6. A.K.Jain \& D.J.Ittner, "Segmentation of Range Images." ECAI. PP.23-28, 1986.
7. K.M. Lim \& K.W.On, "A Face Recognition System Using Fuzzy Logic, ${ }^{\text {n }} \mathrm{l}^{\text {st }}$ Korea•Japan Joint Conference on Computer Vision. pp 504 -509, 1991.
8. J. Y.Song. "A Recognition of Hand Written Hangul by Fuzziness of Segment," Proceedings of KlTE, pp.717-719. VOL.14,No.2. Novem ber, 1991.
9. R.H.Park et al. "Steres Matching Technique Based on the Theory of Possibility." Pattern Recogntion Letter. VOL. 13. October, 1992.
10. D.U.Cho \& B.U.Choi, "Feature Extraction of the Objects Using Depth Information," K!SS. pp.517~525, Vol.15, NO.6. 1988.
11. M.Yamakawa, "Intrinsic Fuzzy Electromic Circuits for Sixth Generaton Computer," in Fizzy Computing, M.M.Gupa and M. Yamakawa(eds.), North Holland, PP. 157-171, 1988.

- Dong-Uk Cho (Regular Member)

He received the B.S. M.S and ph.D in Electronic Engin eering all from the Hanyang University in 1983, 1985 and 1989 respectively. He is an assistant professor of computer science and engineering at Seowon University, Chongju since 1991.

Before joining Seowon University faculty, he was an assistant professor of telecommunication engineering at Dongyang Technical College for 2 years.
His research interests inclyde computer vision, fuzzy set theory and neural network. He is a member of the IEEE PAMI and KITE

AHeung-Gyoon Ryu(Regular Member) vol.12.No. IE

An-Yeong Kim(Regular Member)

He is an associate professor of computer science and engineering at Seowon University, Chongju since 1989. His research interests include system performance evaluation, computer vision and tele-measuring and controlling system.

Before joining Seowon University faculty, he wae the Chief Research Scientist at the Central Research Center at Oriental Precision Company Ltd. for $21 / 4$ years. Before then he was an assist. ant professor of computer science and engineering at Auburn University, Auburn, Alabama for a year.

He received M.B.A in MIS and M.S and ph. D in computer science all from the state University of New York at Binghamton NY. in 1977, 1979 and 1984 respectively. He is a member of the IEEE Computer and Communication Societies and the ACM

[^0]: * : 서원대학표 저자계산학와

