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The Asymptotic Analysis of the Smoothed Least Mean Square
Algorithm and Its Applications
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Abstract

In this paper, we investigate the asymptotic performance of the smoothed least mean square{SLMS) algorithm,
which gives another insight into the SLMS algorithm, Based on the results obtained, we consider the relation be-
tween the SLMS algorithm and other LMS-type algorithms-the linearly filtered gradient{lLFG} algorithm, and the
stochastic gradient descent (SGD) algorithm. In addition, it is shown that nonstationary performance of the SLMS
algorithm is comparable with that of the LMS algorithm by computer simulation
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L. Introduction plication areas of ADF's include line enhancing

{4), noise cancelling[5), channel equalization[6],

Since Widrow and Hoff proposed the lease and adaptive array processing[7], and are being
mean square{LMS) algorithm{1](2]. Many widened further with the rapid advance in digital
researchers have studied various structures and IC technology. Among various structures and ad-
adaptation algorithms for adaptive digital filters aptation algorithms proposed so far, the finite im-
(ADF's). These ADF's have found many pulse response{FIR) ADF using the LMS algor-
applications in sitations where the statistics of in- ithm is being widely used due te its simplicity in
put processes are unknown or changing. The ap- realization, However, one drawback of the LMS

“Department Electronics algorithm is known to be its slow convergence
par , . . .
Kangwon National University speed when the input signal is highly correlated

Hrd 1992, 12. 12, (21{3). The convergence speed of the LMS algor-
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ithm depends on the choice of the design factor g
called a convergence factor. To improve the con-
vergence speed of the adaptive algorithm, many
other filter algorithms have been proposed and
investigated. One approach to increase the con
vergence speed is to use a matrix convergence
factor. This type of weight adjustment is known
as the self-orthogonalization|8). Another ap-
proach is to use time varying and for individual
convergence factors. A modified LMS called «
-LMS[9], where a convergence factor u was
made time varying in inverse proportion to the
input power, was introduced.

The performance characteristics of the LMS
algorithm have been studied extensively and are
relatively will understood. Under the assumption
of stationary uncorrelated input data vectors, the
time constant of the LMS learning curve was
shown to be inversely proportional to a conver-
gence factor p and the nusadjustment to be di-
rectly proportional to it[2][3], and recently under
the assumption of uncorrelated Gaussian input,
exact analysis of the LMS algorithm including
the second moment behavior was studied in [10].

The most of the aformentioned ADF
algorithms based on the LMS algorithm were
mainly intended Lo speed up the adaptive pro-
cedure with the guarantee of stability. Hence the
performance analyses of these ADF algorithms
show that the cfonvergence speed can be
improved but that those algorithms do not pro-
vide satisfactory misadjustment performance in
comparison with that of the cenventional LMS al-
gorithm, Attempts to decrease misadjustment
have also been made to devise more efficient

algorithms by using two-stage method. Large

values of u are first chosen to achieve rapid con-

vergence; then, after convergence has been
achieved, smaller values are chosen to minimize
misadjustment. Unfortunately, this method does
not work if input is not stationary. In a recent
paperl11], an adaptive damped convergence fac-
tor was suggested. There the new convergence

factor was decreased as the gradient of perform-

ance surface approached to zero. Hence, the
misadjustment was reduced when the algorithm
was in the steady state, However, there 1s a hmi-
tation in reducing pusadjustment using the
decreasing  convergence factor, for the
misadjustment: is essentially due to gradient
noise{2]3). In order to reduce the pradient
noise, ensemble average should be taken and 1n
an ergodic case time average can replace it, In
the stochastic gradient descent (SGD) algor-
ithm{12], the stochastic gradient of the
time-averaged squared stochastic error was used
for the estimation of the gradient of MSE. Using
a long term-averaged gradient estimate gives a
small misadjustment. But, the convergence speed
to guarantee the stability gets decreased and the
performance in a nonstationary case becomes
poor .

Recently, the smoothed least means sgquare
{SLMS) algorithm was proposed and its perform
ance was analyzed by Feuer and Berman[13].
Their study indicated that the sleady state
peformance could be improved by adding a gradi-
ent smoothing element, while not affecting the
convergence speed. In effect, the SLMS algor-
ithm 15 a sort of the lincarly filtered gradients
(LFG) algorithm proposed previously hy Proakis
[14]), However, our analysis shows that the con-
vergence behavior is quite different from that of
the LFG algorithm in some aspects. On the other
hand, the SLMS may be considered a modifi-
cation of the SGD algorithm, In case of the SGD
algorithm, a small misadjustment can be achieved
at the expense of convergence speed. [However,
it can be shown that the SLLMS algorithm gives a
small misadjustment without the loss of conver-
gence speed.

In this paper, we investigate the asymptotic
performance of the SLMS algorithm, which gives
another insight into the SLMS algorithm, Based
on the resuits obtained, we consider the relation
between the SLMS algorithm and other
LMS-type algorithms-the linearly filtered grad:-
ent{LFG) algorithm, and the stochastic gradient
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descent (SGD) algorithm. And we show that
nonstationary performance of the SLMS i1s as
good as that of the LMS algorithm by computer
simulation,

The organization of this paper is as follows, In
Section ll. we formulate the SLMS algorithm
and investigate its convergence and asymptotic
performance. In section I, we consider the
relationships between the SLMS algorithm and
other algorithms, [n Section IV, we present vari-
ous computer simulations to verily the results
obtained in Section I and ll. Finally, we draw
conclusions in Section V.

II. The Asymptotic Analysis of the SLMS Algor-
ithm

The SI.MS algorithm is given as [13](15]

Wat 1~ watpuly (la)
Thn=al» I+(1_a.’en1'n. ()<(7<1 (lb)

where w, and x» are the (NX1) weight vector
and the (N x1) input vector, respectively, u is a
convergence factor, a ts a smoothing factor, and
the error signal ex is defined as ex -~ d»— yn. Where
dn is a desired response and y, = XL w,. It is well

known that the optimal weight vector wyp 1s
Mam R_,,l P, (2)

where Ry =E[x,%:] and Pv= E[dnx.].
Since the input autocorrelation matrix Ry is
symmetric, there exists a matrix Q« such that Q!

=Qland
Q 'R, Q.=A.=diag{))) (3)
where f denotes a transpose operator and A, ¢ =

1.2,---,N are the eigenvalues of R:. It can be eas-

ily shown that (1b) is rewritten as

Cr=(l—a)S a'Cn 1xn : (@)

ppoct

From (4}, the gradient estimate used in the
SLMS algorithm includes an infinite summation
of exponentially weighted data with the present
data contributing more ingeneral, while in the
SGD algorithm equally weighted finite data are
used for a gradient estimate[12]. In addition, in
the SILMS algonthm, a weight vector is adjusted
at every instant unhkely the SGD algorithm.
From these facts, we may find the possibility
that this algorithm has almwst the same conver-
gence speed as that of the LMS algorithm and at
the same time gives smaller misadjustment. We
will show later that the above statement is justi-
fied through analysis and computer simulations.

For the proof that the mean weight vector
converges to the optimum Wiener solution, We
also assume that the input sequences are statisti-
cally independent over time and stationary, and
have zero mean, Using this assumption, we can
obtain a difference equation for the mean weight
vector by averaging (1a) .

El."’n+]]=E["’n]+I-l(l_a)ia’{E[dn--:-"n-i]_E
I.In z'-trlw z'w»l":,]:
=Elw.]+pu(1—a)S @[ p,— R<Elw,- i}
=ElwalHup(l-a)S o —p(l- )R a,

Elww il (5)

Using way = R7}p, and (l—a)i «=1, (5) becomes

Elw,i.]=Elw,]+ uRewopm — u(l —a]ina,E[u’u il
{6)

Defining v, =w, — wep, we have

Elvnei) = Elva] = R4 (1 ~a) %, aElwn - 1 —wepo)

—Elv,] ~ uRA(1 =) @Bl wa J= (1-a)

.

i Q‘;Wop(}

a—i1

=Elval— pRAL =) L e Bl ws ;] = wope
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=Elv,] = pRel1 ~a) L aEl v ] (7)
Let(7) be premultiplied by Q™)
ELQ }va+:] =E(Q)0n]~4Q RQ,(1- )L K
[Q Wa-i] {8)
Defining ¥, = Q") v, again, (8) may be rewrtten as
E(#nt1] =El7) —pA (1 —a);";uaxﬁ[w,,_,-] (%)

=u~ﬂ(1—a)/\,}E[e,.]—mxu—mgat-:[r,.-,-] {9b)

= {J—pu(1— a) A SE[Fa ] —pA (1 —a)aioa’El_v‘n i)
{9c)

In {9a), replacing index » with »—1, we have
E[V‘n]=El¢n-l]_ﬂ/\x(l_a’);'a"E[Fw-i-l] (1.0}

Manupulating (10), we obtain the following equa-
tion :

~ WAxl k= 2)aY. #El7-i-1] = L7, ~E[7y-1J)
(11)
From(9c) and (11), it ¢an be shown that it can be

shown that E[#,] satisfies the following the sec-

ond order recursive equation :

E[Fue ] ={1Fa)H—pu(1—a}A JE[#,) —aE[7— 1]
(12)

For changing(12} into a first order equation of di-
mension 2N, let

_[ E[v.] ]
E(#+1] (13a)
X=~aland Y = (1+al {1~ a)A,. {13b)

Then, (12} may be expressed as a first-order

equation :
A, =CA:- (14)
where
(33
XY (15)

In(15). O denotes (NXN) zero matrix. The
necessary and sufficient condition for conver-
gence of the vector A, is that the eigenvalues of
C be less than unity in absolute value, Now we
consider the convergence condition in connection
with the convergence factor g and the smoothing
factor «. Let n be any eigenvalue of C with the
corresponding eigenvector q‘=[q{. 021] where ¢,
and ¢, are N-dimensional column vectors. Apply-
ing these to € of (14).

Cq-=ng (16}
which reduces to

Xq +n¥q =rq (17)
or, equivalently

—aq+ i+ e f=p(l—a)A g =n'q. (18}
Again, (18) can be expressed in a scalar equation :
#~{l+a) —pll —addin+a—0 foralls (19)
For convergence, the absolute value of y should be
less than unity. For a particular A, it is shown that a
necessary and sufficient condition for |5l <1 in (13}
IS

14a2
l—aA, (20}

o<n<

Since the inequality should be satisfied for ail A;, the

convergence condition becomes

14+a2
0<A< T3 Amn @
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That is, if u satisfies the above convergence con-
dition, E[¥,] converges to zero and there by E[»
») also converges to zero. Subsequently, Elw,]
CONVErges to wy, sence v, =w,~wy:, Moreover,
the above inequality is the same form as the con
vergence conditions for other [MS type
atgonithms and is simpler and more useful for
understanding and comparison with others than
that presented in [13).

Next, we will derive the misadjustment of the
SLMS algorithm asymptotically by following the
same strategy of denvation of the LMS aigorithm
presented in[2]] 3], From (la) and (4) the smoothed
gradient cstimate V &, is

Vé= _Z(l_a)ia}en—:"‘n‘f (22)

r=ir

Since gradient noise in steady-state is equal to
gradient estimate| 23|, that is, N,xV &, the co-
variance of gradient noise is

cov[N,] = E[N, NL1=4(1 —a)W_' E &a’Bley- ;€0 X,

T =dp pooef]

r'xy’J r'-l (23)

where N, denotes the gradient noise in steady-state.
For analysis, we assume as earlier researchers did
[12]i16] that the sequence of vectors tx). dlf1s a
zero-mean jointly Gaussian process and uncorrelated

aver time, and then
Ele,-ix,-i1=0, for i#; (24}

Furthermore, after the system s adapted
sufficiently long, we can assume the system is in
steady-state at any instants n—7 and 2— 7, even for
considcrably large values of ¢ and 7, and therefore

the orthogonzl principle can be applied, i.e.,

El-en X !]=O and E[een i_]zfnln. for iz(},].,?.,"',[,
{26}

where L is a considerably large value. Moreover,

terms for :>L and 72> L in {23) are approxirnately
zero since « 1s small in practical circumstances,
From (24) and (25}, since orthogonality principle
inplies uncorrelatedness for a zero-mean jointly
gaussian process, e,., and x,_; are uncorrelated
for .7 —0.1.2,---,L and the terms for ¢>L and j
>L can be ignored. Consequently, (23) may be

rewritten as

cov| N, | k4(1-a)“£§:aﬁ'al'E[en &n Elx, xh.

IEYRG

— 4{1-a)’RY. 2¥E[ & _,]
=41~ )Ry @

—4 j(l.__;::% R’Emjn (26)

Then the covariance of the projection of the
gradient noise, N,=Q } N,. becomes

l+a

T:t-l—- /\x&run (27)

covi N, 1= 4

Referring to [2] and [3], we can obtain from (27)

cov[n]z% = fewd (28)

and the averaged excess mean squared error Eles]
I given as

1+a

1—o

et Ry (29)

Eirn] B ,i

where tr denotes trace operator. Accordingly, the

misadjustment M is

lIta

11—«

_ Ele.]

€min

HtrR, {30}

M Elel 1
Comparing (30) with the misadjustment of the LMS
algorithm presented in [2], one can see that the
rmisadjustment of the SLMS algorithm 1s smaller
than that of the LMS algorithm since « is greater
than zero. Moreover, when a=10, (30) reduces to
the misadjustment of the LMS algorithm. Once the
system is adapted long enough to make it possible

to set a time index # to be infimty, it is plausible
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that the system is still in steady-state at instants »
—7 and n—j, even if the summation indices ¢ and
are arbitrarily large. Therefore, though a =1,
(30) is valid, and the misadjustrment can become
arbitrartly small as the time index » goes to infin-
ity if input data are stationary

Now, we consider the convergence speed of the
SLMS algorithm, For the LMS algorithm, it can
be seen that the convergence speed of the LMS
algorithm depends on the diagonal matrix (f-puA
«). On the other hand, based on (14), the conver-
gence speed of the SEMS algorithm depends on
the eigenvalue of the matrix C. For the compari-
son of the convergence speeds between the
SLMS and LMS algorithms, we consider a par-
ticular eigenvalue A, of R« In (19), for the par-
ticular A it can be shown that if the equation
(19) has real roots (In practical applications, this
assumption is valid. See Appendix.), the absolute
value of the corresponding x is

L] ==
(1+a) — (1 - adrt (1- )= 2url1 — ) (1 Fa)Hu? 2 J1 -l
2

(31)

In (31), we chose the larger of the two real roots
since between the corresponding two real roots g,
and #,, the larger one governs the convergence
speed. Under the assumption 7;:1.-{1 for all ¢,
which was also assumed in [2] and [3), since p% A
¢is very small and 0<a<1, the equation inside
the square root in (31} can be approximated as

follows :

{1—a)?=2pai(1=a) (1+a) 42 1 {1 —a)?

= (1-a)?—2pr (1l —a}(1+a)+u2 2 A1 +a)?
=H{1—a) —pr(l+a)?} (32)
Inserting (32) into (31}, we have

Il = J1—pA) {33)

From (33), one can see that the convergence

speed of the SLMS algorithm 1s approximately
equal to that of the LMS algonthm in practical
applications. This result is consisten with that
obtained by [13], that is, the steady-state per-
formance is umproved while the convergence
speed is the same as that of the LMS algorithm.
The equation (19) may have complex roots. In
practical applications, however, this is a rare case
which results in a damped oscillation. As
mentioned in appendix, the assumption,

% uhy €l guarantees that (19) has real roots.

. The consideration on the Relaition with
Other LMS -type Algorithms

Here, the comparison between the SLMS al-
gorithm and other algorithms-the SGD algorithm
and the LFG algorithm-will be made, First, in the
SGD algorithm the stochastic gradient of the
time-averaged squared error is used as follows
[121:

Wint1) = Wnk"%ﬂv €nk (34a)
2 -1

Ve = K ;oenk+q-tnk+q (34b)

Wonk+q = Wnk. q=1‘2>"‘nK_1 (34(:)

For the special case K=1, the SGD algorithm is
the very LMS algorithm, Furthermore, K=1
yields the most rapidly converging algorithm The
SLMS algorithm is different from the SGD algor-
ithm in that the former has a gradient estimate
averaged with an exponential window instead of a
rectanguiar window and adjusted at every in-
stant. However, one can expect that steady-state
behaviors of these two algorithms will be similar.
As for the SGD algorithm, it is known(12] that
the misadjustment is

S
M= ZK'HUR" {35)

That is, averaging gradient estimate over many



% The Journal of the Acoustical Suciety of Korea, Vol, 12. No. 1E (1993)

time instants gives small misadjustment. Under
the assumption with respect to the deswred re-
sponse and input vector, &,x, used 1n {22) 1s inde-
pendent process in steady-state, and then it can
be shown that [17]

* 2 e
_2(1_“):de):—lxn 1= - T :en—.ixn—r (3()6‘)
fer iP =0

where LPis called a learning period and given as

—lta

LP= (36b)

l—a

One can see that the right side in (36a) is the
very gradient estimate used in the SGD algorithm
(See(34b)), and furthermore, replacing K in (35)
2ith (36b) results in (30). This fact is in agree-
ment with our analysis as we expected.

In the next place, the LFG algorithm proposed
by [14] uses a linearly filtered gradient

Ve, =aV ¢,-,H —2e,x,}, 0<a<] (37)

The N-dimensional filter is in effect a set of ¥
identical firts-order filters operating in parallel.
Each has a z-transform

o1
Hilz) = “wz U {38)

In case of the SLMS algorithm, a different filter

which has a z-transform expressed below 1s used :

Helz) = - & (39)

1—az !

According to 114], the condition that g and «

must satisfy for stability is

0< 4< (14 ) 12 (40}

max
The above condition is consistent with our result
in that the LFG algorithm also has the advantage
of extending the upper bound on the value of u as
in the case of the SLMS algorithm, However, as

for the misadjustment, these two algorithms
show very different convergence characteristics.
According 1o | 14, the misadjustment of the LFG

algorithm is
M= éil_l—a) nteRy (41)

Comparing {41} with (30}, increasing the con-
slant & means a large nusadjustment in contrast
to the SLMS algorithm, These conflicting results
may be explamned as follows : The LFG algorithm
may be rewritten as

W, TEw, e, talw, w, o)) (42)

This expression 15 the very algorithm called the
momenturm |LMS(MILMS), which was proposed
recently by [ 18]. Referring to the analysis in
[18]. in which the same approach as presented in

[16] was followed, il can also be shown that in-
creasing the constant o which was called momen-
tum constant lhere makes the misadjustment
large. The SLMS aigorithm may also he
expressed in the form of Lthe eguation {42} as

follows
Wyt = Wyt X, talw,—w, |} {43a}
where
p=ull—a) _ (43b)

From (43b), the larger the constant a, the
smaller the virtual convergence factor g, and
therefore we can interpret the conflicting fact
mentioned above as follows : the effect of the vir-
tual convergence factor a 1s more dominant than
that of momentum term afw,—w,—;}, as the con-
stant a becomes large, for a small convergence
factor gives a small misadjustment,

Now, we consider the convergence speed of the
LFG algorithm with the same stratigy as
presented in Section 1. In case of the LFG algor-

ithm, the analogous equation with {19} is
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7 —{(1+ta) —Algta=0,1=012.. . .N-1 (41)

The absolute value of the larger one of two roots

in (44) is given as

inl=

(1Fa) — uxt /(I FaiZ—2(1Fa) b+ A2~ da
e - Lol

{45)

The equation inside the square root in (45) can
be rewritten as follows :

(1+a)t = 2(1+a) uhi+ 132 — da
={1—a)*—2(1 —a) g+ p*A?—daui;
={1—a) uri* —daud; (46}

From (45) and {46), we have

Il < 11— pasl (47}

The equation {47) indicates that the convergence
speed of the LFG algorithm is faster than that of
the LMS algorithm. In addition, since large value
of a means small value of |gl, the larger the
value of a 1s. the faster the convergence speed is.

N. Computer Simulation Results and Dis-
cussion

In the previous sections, we have studied the
asymptiotic convergence behavior of the SLMS
atgorithm and compared the results with those of
the results with those of other LMS-type
algorithms. In this section, by computer simu-
lation, we verify the analytical results and inves-
tigate nonstationary characteristics. For our com-
puter simulation, we consider a channel equalizer
and an adaptive Jine enhancer{ ALE} problems,

In the first place, a channel equalizer is con-
stdered. The receiver of a simplfied base-band bi-
nary data transimission system is shown in Fig 1.
‘This adaptive equalizer and channel characteristics
are identical to those used in [19]. The channel im-

pulse response used in our simulation is given by in
(48) and W has been set to 3.3 for eigenvalue ratio
of 21.

" 2{1 /2 1~cosi2nl(z =2 /W}). 1<:<3
B} otherwise  (48)

The output of the channel has been scaled to
unity power. White Gausstan noise with variance
of 0.001 has been added to the equalizer input.
The number of the equalizer weights was 16 and
all the initial values of them were set to zero. As
a performance measure of the ADF, we have used
the MSE estimate that is obtained by computing
an ensemble average of 500 individual squared er-
ror. First, we discuss the results of computer
simulation on the convergence speed and

ADDITIVE
NOISE
DATA / DECISION
N ~
CHANNEL _/L Yn — Yn
{t 1—e @ EQUALIZER
{hel {Wni} ~ — DATA
/ A, SW 2 | OUT
dn 1
ADAPTIVE

ALGORITHM |en

TRAINING
SEQUENCE

Fig. ). Base-band data transmission system using an
adaptive channel equalizer

misadjustment. Fig 2. shows the convergence
behavior of the conventional] LMS algorithm. As

noted in Introduction, rapid convergence results

(B 08

MEAN SQUARE ERROR (dB)

1 I 1 Il

- -l fl I |
30 400 600

|
] 200

NUMBER OF ADAPTATIONS
Fig. 2. Convergence characteristics of the LMS algor-
ithm
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in large steady state musadjustment and slow con
vergence small steady state misadyustment. Fig
3. shows learning curves of the 1.MS algorithm
with 54 =0.0625 and the SLMS algorithm with u
=0.0625 and «=90.1 0.3 and, 0.5. As analyzed
previously, we can see from this figure that con-
vergence speeds of both algorithms are almost
identical regardless of several values of a, but the
misadjustment of the SLMS algorithm 1s smaller,

z e
: £4=0.0625
5 -
8 L
« 5
g L
£ 1o
[ -
W 14
g B LMS
o -18F
a N 1
3 -224- e T e i e T
- C I F
—28 a=0.1 a 10.3 a=0.5
L | 1 ] ! 1 L
_30 L 1 1 200 i 1 400 soo

NUMBER OF ADAPTATIONS

Fig. 3. Comparison of the convergence characteristics
of the LMS and SLMS algorithms

Fig 4. shows that the SLMS algorithm is more
stable than the LMS algorithm when both algor-
ithm have the same convergence factor. This is
consistent with the fact that the convergence
bound of the SLMS algorithm is increased, as
analyzed in (21). Next, we discuss a

MEAN SQUARE ERROR (dB)

(2) SIMS  u=0.09, a=0.2

- \ Il 1 1 1 2 1
g 200

|
300 800
NUMBER OF AOAPTATIONS
fig- 4. Comparison of the convergence characteristics
of the LMS and SLMS algorithms when the

convergence factor is near the convergence
bound

nonstationary case. Since the mathematical
analysis of the nonstationary characteristic of an
adaptive algorithm is very difficult, we investi-
gate it by computer simulation, As for the LMS
algorithm, a small convergence factor yields poor
nonstationary performance|3]. This nonstationary
performance of the LMS algorithm is shown in
Fig 5. The nonstationary situation for computer
simulation is as follows. The channel impulse re-
sponse, i, is assumed to be time-varying. For this
time-varying impulse response. we introduce a
time-varying W instead of a fixed ¥ in (48) as
follows.
wa '+ 0.275 sin(-505) +3.1

To obtain optimal weights corresponding to
time-varying W, for every Wa., n=1,2,....400, we
carried out the LMS algorithm where x4 was ex-
tremely small and the number of adaptations was
very alrge. Fig 5. shows the change of the 8-th
componemt of the mean weight vector Elwn]
over time under the nonstationary environment,
In Fig 5. as mentioned above, it can be observed
that the weight vector of the system can track
the optimal weight vector better with a larger u

2) u=0.065

gl i OPTIlgAL WEIGHT
3

(1)

€13

AVERAGE WEIGHT

L . 4 { ! | }
085 50 700 306 700

RUMBER OF ADAPTATIONS

Fig. 5. Nonstationary characteristics of the LMS algorithm

Fig 6. shows the nonstationary characteristics of
the SLMS algorithm. As « becomes large,
tracking capability of the SLMS algorithm
becomes poor, which may be expected by in
tuition. Nevertheless, the tracking curves of the
SLMS algorithm are sirnilar to that of the LMS
algonthm. In addition, Fig 7. shows that when u
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is set to be a large value for better tracking, the
SLMS algorithm keeps more stable track, while
the LMS algorithm is locally unstable,

2) LMS u=0.065
3) SMS  u=0.06

1) OPTIMAL WEIGHT
S
a=0.1, 0.2, 0.3 ,0.4

AVERAGE WEIGHT € [wy

| | 1 1
Q 100 200 300 400
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Fig. 6. Comparison of the nonstationary charactenistics
of the LMS and SLMS algorithms
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Fig. 7. Comparison of the nonstationary characteristics
of the [LMS and SLMS algorithms when the
convergence factor is near the convergence
bound

Now, we consider the ALE problem. Fig 8.
shows the block diagram of ALE. The input to
the ALE is given as

WPUT

L3

[ ADAPTIVE ALGORITHM

Fig. 8. Block diagram of ALE

X, = \/ésin[ 'Z'Z%k-]+\fﬁ ’o {49)

in {49), »» has uniform distribution between -.5
and 0.5. and therefore the signal-to-nise ratio
(SNR) 15 unity, Fig 9. shows the output of ALE's
using the LMS and SLMS algorithms, In Fig 9.
the vertical line indicates the output of an ideal
ALE, that is, spectral line with normalized fre-
quency, f = (.05 From Fig 9. we can see that the
ALE using the SLMS algorithm estimates more
accurate frequency and reduces more wide-band
noise,
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Fig- 9. Comparison of the frequency responses of adapt-
ive filters in ALE using the T.MS and SLMS
algorithms {g -— 0.006, SNR=1)
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V. Conclusions

In this paper, we investigate the asymptotic
performance of the SLMS algorithm and its
applications. By re-formulating and analyzing the
SLMS algorithm by Berman and Feuer, more
useful results for understanding the algorithm is
obtained. Since these results have useful forms in
comparing with other LMS-type algorithms, they
give some new perspectives on the performance
of the SLMS algorithms. Especially, it is clearly
shown that the convergence speed of the SLMS
atgorithm 1s asymptotically identical to that of
the ILMS algorithm, Furthermore, the SLMS al-
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gorithm is compared with similar algorithms-the
SGD and LFG algorithms, and the relationship on
thesc algorithms is considered. [n comparing with
the SGD algorithm, we obtain the condition under
which these two algorithms have the same steady
state performance, In case of the LFG algorithm,
the formulation of the algorithm is stmilar to that
of the SLMS algorithm, but the cvonvergence
characteristics of the two algorithms are very dif-
ferent. We clearly explain this conflicting
phcnomenon, where we also show that the LFG
and MLMS algorithms are exactly the same al-
gonthm.

The analysis performed in this paper is verified
by computer simulation, According to the com-
puter simulation for a channel equalization, one
cun see that the SLMS algorithmn is more stable
than the LMS algorithm when a convergence fac-
tor is near the convergence bound. In addition,
we Investigate the nonstationary characteristics
of the SLMS algorithm, In case of an ALE
problem, we show that the ALE using the SLLMS
algorithm estimates more accurate frequency and
reduces more wide-band noise,

APPENDIX

RELATIONSHIP BETWEEN RQQTS OF (19) AND a
Whether the roots of the equation (19) are real
or complex depends on a value of a, and
influences Lhe convergence characteristics of the
algorithm. In case that (19) has real roots, the
following inequality should be satisfied :

prll—a) = (1F+a) ¥ —daz0 (Al)

After some manipulation, we may rewrite (Al) as

(e —2[ 1 4120 (A2)
From (A2),
1+a _

Osphis— {(A3a)

1~

or

H“ \/[H“ -1 sul,<2(—l—)

{A3b}

Since pA; is small value, we are interested in
(A3a). In (A3a), the smailer uaA; is, the larger
value a may be allowed. For instance, if ua;=0.2,
the bound of &« to allow the equation to have real
roots 1s 0.443 and pd; -~ 0.1 the bound is 0.667. In
practical circumstances, pA; <1, and the equation,
therefore, has real roots over a wide range of a.
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