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The Asymptotic Analysis of the Smoothed Least Mean Square 

Algorithm and Its Applications

SLMS 알고리즘의 근사적 분석과 그 응용

Ikjoo Chung *

정 익 주*

Abstract

In this paper, we investigate the asymptotic performance of the smoothed least mean square(SLMS) algorithm, 

which gives another insight into the SLMS algorithm. Based on the results obtained, we consider the relation be­

tween the SLMS algorithm and other LMS-type algorithms-the linearly filtered gradient (LFG) algorithm, and the 

stochastic gradient descent (SGD) algorithm. In addition, it is shown that nonstationary performance of the SLMS 

algorithm is comparable with that of the LMS algorithm by computer simulation

요 약

Berman고卜 Feuer의 SLMS(smoothed least mean square) 알고리즘의 근사적 분석을 행하여 보다 유용한 분석결과를 얻 

었다. 수렴범위와 misadjustment에 대한 분석에서는 기존의 알고리즘의 분석 결과들과 비교할 수 있는 형태로 얻었을뿐만 

아니라 여러 변수들이 이 알고리즘의 성능에 미치는 영향을 명확히 알 수 있는 형태로 얻었다. 둘째로 몇몇 서로 유사한 알 

고리즘들을 비교검토함으로써 서로간新 관계를 밝히고 이 결과들을 해석하였다.

이어서 위의 분석결과들이 유효함을 살험을 통하여 밝혔다. 수렴한계 근처에서 LMS알고리즘보다 안정됨을 보였다. 이들 

알고리즘의 비정상특성(nonstationary 아laracteristics)에 대하여서도 살펴보았는데, SLMS알고리즘의 경우 추적능력의 

별다른 희생 없이도 가중계수(weight)의 잡음을 줄일 수 있음을 보였다.

I. Introduction

Since Widrow and Hoff proposed the lease 

mean square (LMS) algorithm[l][2]. Many 

researchers have studied various structures and 

adaptation algorithms for adaptive digital filters 

(ADF's). These ADF's have found many 

applications in sitations where the statistics of in­

put processes are unknown or changing. The ap-
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plication areas of ADF's include line enhancing 

[4], noise cancelling[5], channel equalization[6], 

and adaptive array processing[7], and are being 

widened further with the rapid advance in digital 

IC technology. Among various structures and ad­

aptation algorithms proposed so far, 나｝e finite im­

pulse response (FIR) ADF using the LMS algor­

ithm is being widely used due to its simplicity in 

realization. However, one drawback of the LMS 

algorithm is known to be its slow convergence 

speed when the input signal is highly correlated 

[2][3]. The convergence speed of the LMS algor­
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ithm depends on the choice of the design factor 卩 

called a convergence factor. To improve the con­

vergence speed of the adaptive algorithm, many 

other filter algorithms have been proposed and 

investigated. One approach to increase the con­

vergence speed is to use a matrix convergence 

factor. This type of weight adjustment is known 

as the self-orthogonalization[8]. Another ap­

proach is to use time varying and /or individual 

convergence factors. A modified LMS called a 

-LMS[9], where a convergence factor 卩 was 

made time varying in inverse proportion to the 

input power, was introduced.

The performance characteristics of the LMS 

algorithm have been studied extensively and are 

relatively will understood. Under the assumption 

of stationary uncorrelated input data vectors, the 

time constant of the LMS learning curve was 

shown to be inversely proportional to a conver­

gence factor “ and the misadjustment to be di­

rectly proportional to it[2][3], and recently under 

the assumption of uncorrelated Gaussian input, 

exact analysis of the LMS algorithm including 

the second moment behavior was studied in [10].

The most of the aformentioned ADF 

algorithms based on the LMS algorithm were 

mainly intended to speed up the adaptive pro­

cedure with the guarantee of stability. Hence the 

performance analyses of these ADF algorithms 

show that the convergence speed can be 

improved but that those algorithms do not pro­

vide satisfactory misadjustment performance in 

comparison with that of the conventional LMS al­

gorithm. Attempts to decrease misadjustment 

have also been made to devise more efficient 

algorithms by using two-stage method. Large 

values of p. are first chosen to achieve rapid con­

vergence; then, after convergence has been 

achieved, smaller values are chosen to minimize 

misadjustment. Unfortunately, 나lis method does 

not work if input is not stationary. In a recent 

paper] 11], an adaptive damped convergence fac­

tor was suggested. There the new convergence 

factor was decreased as the gradient of perform­

ance surface approached to zero. Hence, the 

misadjustment was reduced when the algorithm 

was in the steady state. However, there is a limi­

tation in reducing misadj ustment using the 

decreasing convergence factor, for the 

misadj ustment: is essentially due to gradient 

noise[2][3]. In order to reduce the gradient 

noise, ensemble average should be taken and in 

an ergodic case time average can replace it. In 

the stochastic gradient descent (SGD) algor- 

ithm[12], the stochastic gradient of the 

time-averaged squared stochastic error was used 

for the estimation of the gradient of MSE. Using 

a long term-averaged gradient estimate gives a 

small misadjustment. But, the convergence speed 

to guarantee the stability gets decreased and the 

performance in a nonstationary case becomes 

poor.

Recently, the smoothed least means square 

(SLMS) algorithm was proposed and its perform­

ance was analyzed by Feuer and Berman[13]. 

Their study indicated that the steady state 

peformance could be improved by adding a gradi­

ent smoothing element, while not affecting the 

convergence speed. In effect, the SLMS algor­

ithm is a sort of the linearly filtered gradients 

(LFG) 시gorithm proposed previously by Proakis 

[14]. However, our analysis shows that the con­

vergence behavior is quite different from that of 

the LFG algorithm in some aspects. On the other 

hand, the SLMS may be considered a modifi­

cation of the SGD algorithm. In case of 나le SGD 

algorithm, a small misadjustment can be achieved 

at the expense of convergence speed. However, 

it can be shown that the SLMS algori나im gives a 

small misadj ustment without the loss of conver­

gence speed.

In this paper, we investigate the asymptotic 

performance of the SLMS algorithm, which gives 

another insight into the SLMS algorithm. Based 

on the results obtained, we consider the relation 

between the SLMS algorithm and other 

LMS-type atgorithms-the linearly filtered gradi­

ent (LFG) algorithm, and the stochastic gradient 
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descent(SGD) algorithm. And we show that 

nonstationary performance of the SLMS is as 

good as that of the LMS algorithm by computer 

simulation.

The organization of this paper is as follows. In 

Section U, we formulate the SLMS algorithm 

and investigate its convergence and asymptotic 

performance. In section HI, we consider the 

relationships between the SLMS algorithm and 

other algorithms. In Section IV, we present vari­

ous computer simulations to verify the results 

obtained in Section U and E. Finally, we draw 

conclusions in Section V.

II. The Asymptotic Analysis of the SLMS Algor­
ithm

The SLMS algorithm is given as [13][15]

x项+i =印〃+“「群 (la)

Fm — aVn-\ H- ( 1 ~a)€nXn, 0＜如＜ 1 (lb)

where wn and xn are the (N x 1) weight vector 

and the (Nxl) input vector, respectively. “ is a 

convergence factor, a is a smoothing factor, and 

the error signal en is defined as en = dn- yn, where 

日케 is a desired response and = 印”. It is well

known that the optimal weight vector wopt is

*opt = R=4 (2)

where Rr = E[as诺]and Px=

Since the input autocorrelation matrix Rx is 

symmetric, there exists a matrix Qx such that Qf

Q】'RxQx = A；r = diag(招) (3)

where t denotes a transpose operator and Xi, i = 

1,2,…，N are the eigenvalues of Rx. It can be eas­

ily shown that (lb) is rewritten as

From (4), the gradient estimate used in the 

SLMS algorithm includes an infinite summation 

of exponentially weighted data with the present 

data contributing more ingeneral, while in the 

SGD algorithm equally weighted finite data are 

used for a gradient estimate[12]. In addition, in 

the SLMS algorithm, a weight vector is adj usted 

at every instant unlikely the SGD algorithm. 

From these facts, we may find the possibility 

that this algorithm has almost the same conver­

gence speed as that of the LMS algorithm and at 

the same time gives smaller misadjustment. We 

will show later that the above statement is justi­

fied through analysis and computer simulations.

For the proof that the mean weight vector 

converges to the optimum Wiener solution, We 

also assume that the input sequences are statisti­

cally independent over time and stationary, and 

have zero mean. Using this assumption, we can 

obtain a difference equation for the mean weight 

vector by averaging (la):

E[s + i] = E[心] +“(1—&)寸 시 E[4 一心 —— E 
j-0

- - j - /] }

= ER" +卩(1一債)寸疽{0lRxE[心—」}

=~ — a) ai

E[w„-J (5)

Using wOpt R~iPr and (1一“)£ 疽=1, (5) becomes 
i-(i

ER&+打= E[m，，打+“R湖opt — 冬(1一“)&£”疋3“-汀

(6) 

Defining —wopt, we have

E|由+」=E|由]一卩R{(1p)Z0E[印宀]-x，°pt}
1=0

=^E[v„] ~~-a)J2 a(E[ww-i] — (1 —a)
(=0

£ 아印이搭

f=0

=E[“] — piRx( 1— a) 12 - J ] — Wopt)
f；=()
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= E[p一共屈(1-a疙*E[閒 t] (7)

Let(7) be premultiplied by

E[Q[»e] = E[Q?M - “Q 二RQ(1-氏荒 kE 
f=()

[Q»t] ⑻

Defining vn = Q~^vn again, (8) may be rewrtten as

E[再z+i] = E[、] 一卩 Ajl荒，，E[侦嚣 _汀 (9a) 
i—0

={/一“(1一(9b)
，=i

= {J—“(1 —u)A JE[舟— ”Ax(l-“)* [再
i=0

(9c)

In (9a), replacing index n with w —1, we have

E[v„] =E[vn-i]-//Ar(l-a)^aI'E[^-J-i] (10)

Manupulating (10), we obtain the following equa­

tion :

一 GcS/E[再I-l] = @{EH说]—E[再Ll]}
i==0

(11)

From(9c) and (11), it can be shown that it can be 

shown that E[vw] satisfies the following the sec­

ond order recursive equation :

E[、+1] = {(l+a)}Z—^(1 —a)Ax}E[»^] — — 1]

(12)

For changing (12) into a first order equation of di­

mension 2N, let

A E[睨 1
L E[再+1]」 (13a)

X= —시and Y= (1+a)/—/z(l — a) Ax. (13b)

Then, (12) may be expressed as a first-order 

equation :

A： ~CAi-i (14)

where

c=r° ']Lx yJ (is)

In(15), O denotes (NxN) zero matrix. The 

necessary and sufficient condition for conver­

gence of the vector Az is that the eigenvalues of 

C be less than unity in abs이니te value. Now we 

consider the convergence condition in connection 

with the convergence factor 卩 and the smoothing 

factor a. Let rj be any eigenvalue of C with the 

corresponding eigenvector 矿=[站,彼 where 们 

and q2 are Ar-dimensional column vectors. Apply­

ing these to C of (14).

Cq = rjq (16)

which reduces to

Xgi + Mi = 〃W (17)

or, equivalently

+ ?/{(l +a)/—/1(1 —a)Aj}^i = rj2qi . (18)

Again, (18) can be expressed in a scalar equation : 

於一{(1+a) — “(1 一 “)制〃+ q= 0 for aD i. (19) 

For convergence, the absolute value of y\ should be 

less than unity. For a particular k, it is 아that a 

necessary and sufficient condition for in (19) 

is

k 4 너f2
Q<n< 1-" (20)

Since the inequality should be satisfied for all X：, the 

convergence condition becomes

nv 4 l+"2
四任' 一1—次사球 (21) 
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That is, if r satisfies the above convergence con- 

d辻ion, E[冃]converges to zero and there by E[v 

„] also converges to zero. Subsequently, E[h»„] 

converges to wopt sence = —wopt. Moreover, 

the above inequality is the same form as the con­

vergence conditions for other LMS-type 

algorithms and is simpler and more useful for 

understanding and comparison with others than 

that presented in [13].

Next, we will derive the misadjustment of the 

SLMS algorithm asymptotically by following the 

same strategy of derivation of the LMS algorithm 

presented in[2][3]. From (la) and(4) the smoothed 

gradient estimate V 爲 is

V 爲=一2(1—a)寸 *”—村宀 (22)
i

Since gradient noise in steady-state is equal to 

gradient estimate[2][3], that is, NqN en, the co­

variance of gradient noise is

cov[N] = E[N，?Nm4(i —&)寸 자

-iXn-^ (23)

v4iere N denotes the gradient noise in steady-state. 

For analysis, we assume as earlier researchers did 

[12][16] that the sequence of vectors is a

zero-mean jointly Gaussian process and uncorrelated 

over time, and then

Ele—r宀]=O, for i^j (24)

Furthermore, after the system is adapted 

sufficiently long, we can assume the system is in 

steady-state at any instants n~i and n—j, even for 

considerably large values of i and j, and therefore 

the orthogonal principle can be applied, i.e.,

= O and E[凶—]=如曲，for z' = 0,l,2,…丄 

(25)

where L is a considerably large value. Moreover, 

terms for i>L and />L in (23) are approximately 

zero since a is small in practical circumstances. 

From (24) and (25), since orthogonality principle 

implies uncorrelatedness for a zero-mean jointly 

gaussian process, en-i and are uncorrelated 

for = 0,1,2, - - -,L and the terms for i>L and j 

>L can be ignored, Consequently, (23) may be 

rewritten as

covINJ - 4(1 -a)2E E cWE0—合—丿Ek宀Ht〕 
心)丿=0

= 4(l-a)2RrV^E[^_,] 
»-()

=4( 1 — a”

=4 攵二位 
(1+a)

(26)

Then the covariance of the projection of the 

gradient noise, M=q；n”, becomes

COV[.N„]七 4，二 Ax&nm (27)

Referring to [2] and [3], we can obtain from (27) 

cov[v„] ~ '■一[[二 (28)

and the averaged excess mean squared error E[占소] 

is given as

E[&] « * 二 MmmtrR (29) 

where tr denotes trace operator. Accordingly, the 

misadjustment Mis

1
2

1+a
MtrR- (30)

Comparing (30) with the misadjustment of the LMS 

algorithm presented in [2], one can see that the 

misadjustment of the SLMS algorithm is smaller 

than that of the LMS algorithm since a is greater 

than zero. Moreover, when a = 0, (30) reduces to 

the misadjustment of the LMS algorithm. Once the 

system is adapted long enough to make it possible 

to set a time index w to be infinity, it is plausible 
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that the system is still in steady-state at instants n 

~i and n—j, even if the summation indices i and j 

are arbitrarily large. Therefore, though a 처 1, 

(30) is valid, and the misadjustment can become 

arbitrarily small as the time index n goes to infin­

ity if input data are stationary

Now, we consider the convergence speed of the 

SLMS algorithm. For the LMS algorithm, it can 

be seen that the convergence speed of the LMS 

algorithm depends on the diagonal matrix 0—印\ 

*). On the other hand, based on (14), the conver­

gence speed of the SLMS algorithm depends on 

the eigenvalue of the matrix C. For the compari­

son of the convergence speeds between the 

SLMS and LMS algorithms, we consider a par­

ticular eigenvalue 兀 of Rx. In (19), for the par­

ticular it can be shown that if the equation 

(19) has real roots (In practical applications, this 

assumption is valid. See Appendix.), the absolute 

value of the corresponding tj is

I히 I =
(1+G—卩 (1—시兀+拱1一“)」2从,(1—“)(1+시 

speed of the SLMS algorithm is approximately 

equal to that of the LMS algorithm in practical 

applications. This result is consisten with that 

obtained by [13], that is, the steady-state per­

formance is improved while the convergence 

speed is the same as that of the LMS algorithm.

The equation (19) may have complex roots. In 

practical applications, however, this is a rare case 

which results in a damped oscillation. As 

mentioned in appendix, the assumption,

~2 "k《L guarantees that (19) has real roots.

DI. The consideration on the Relaition with 

Other LMS-type Algorithms

Here, the comparison between the SLMS al­

gorithm and other algorithms-the SGD algorithm 

and the LFG algorithm-will be made. First, in the 

SGD algorithm the stochastic gradient of the 

time-averaged squared error is used as follows 

[12]：

w(„+1)=即nk —2nk (34a)

2 kt
V 2nk = — u £ Cnk+qXnk+q (34b)

<7=0

印nk+q=Mkk, Q=l,2,. • (34c)

For the special case K=l, the SGD algorithm is 

the very LMS algorithm. Furthermore, K=1 

yields the most rapidly converging algorithm The 

SLMS algorithm is different from the SGD algor­

ithm in that the former has a gradient estimate 

averaged with an exponential window instead of a 

rectangular window and adj usted at every in­

stant. However, one can expect that steady-state 

behaviors of these two algorithms will be similar. 

As for the SGD algorithm, it is known[12] that 

the misadjustment is

M -~r^trRx (35)

That is, averaging gradient estimate over many 

2

(31)

In (31), we chose the larger of the two real roots 

since between the corresponding two real roots 椚 

and 如，the larger .one governs the convergence 
speed. Under the assumption 島却사《1 for all i, 

which was also assumed in [2] and [3], since /i21 

j is very small and 0<«<l, the equation inside 

the square root in (31) can be approximated as 

follows :

(]一 a)2 — 2“人f (1 一 M (1+a)+"2 人?(1 — a)2 

서; (1—a)2 —— tr) (l+a)+/!2 ^.?(l+a)2 

={(I-a) —(32)

Inserting (32) into (31), we have

k/l 이 1 一卩시 (33)

From (33), one can see that the convergence
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time instants gives small misadjustment. Under 

the assumption with respect to the desired re­

sponse and input vector, enxn used in (22) is inde­

pendent process in steady-state, and then it can 

be shown that [17]

x 2 L,'
一2(1—3)£冰。刀—1工，?—1= Hen-iXn-t (36a)

i /P r-l) 

where LPis called a learning period and given as

LP=「i±으 (36b)

1—a

One can see that the right side in (36a) is the 

very gradient estimate used in the SGD algorithm 

(See(34b)), and furthermore, replacing K in (35) 

with (36b) res니ts in (30). This fact is in agree­

ment with our analysis as we expected.

In the next place, the LFG algorithm proposed 

by [14] uses a linearly filtered gradient

V en=a^ {-2enxn}. 0<«<l (37)

The iV-dimensional filter is in effect a set of N 

identical firts-order filters operating in parallel. 

Each has a z-transform

二&=T (38)

In case of the SLMS algorithm, a different filter 

which has a z-transform expressed below is used :

Hs{z) = jUi (39)

According to [14], the condition that 卩 and & 

must satisfy for stability is

(1+q) a 2 - (40)
사nax

The above condition is consistent with our result 

in that the LFG algorithm also has the advantage 

of extending the upper bound on the value of “ as 

in the case of the SLMS algorithm. However, as 

for the misadjustment, these two algorithms 

show very different convergence characteristics. 

According to L14], the misadjustment of the LFG 

algorithm is

"a项土嵐世區 (41)

Comparing (41) with (30), increasing the con­

stant a means a large misadjustment in contrast 

to the SLMS algorithm. These conflicting results 

may be explained as follows : The LFG algorithm 

may be rewritten as

wn+i = 叭七妃시方—1) (42)

This expression is the very algorithm called the 

momentum LMS(MLMS), which was proposed 

recently by [18]. Referring to the analysis in 

L18], in which the same approach as presented in 

[16] was followed, it can also be shown that in­

creasing the constant a which was called momen­

tum constant there makes the misadj ustment 

large. The SLMS algorithm may also be 

expressed m the form of the equation (42) as 

follows

wn+} = (43a) 

where

2 =卩(1一“) (43b)

From (43b), the larger the constant a, the 

smaller the virtual convergence factor and 

therefore we can interpret the conflicting fact 

mentioned above as follows : the effect of the vir­

tual convergence factor £ is more dominant than 

that of momentum term 席(*” — 1*^—1), as the con­

stant a becomes large, for a small convergence 

factor gives a small misadjustment.

Now, we consider the convergence speed of the 

LFG algorithm with the same stratigy as 

presented in Section II. In case of the LFG algor­

ithm, the analogous equation with (19) is 
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於 一 {(l+") 一入山+ " = 0, i = 0,L2,...,VT (44)

The absolute value of the larger one of two roots 

in (44) is given as

mi =
(1+a) — /사'、/(l+a)2 —2(l+u) “左+泌人2一 4a * I 

-

(45)

The equation inside the square root in (45) can 

be rewritten as follows :

(1+a)2 一 2(1.+@)北左+穴2入2 —4“

= (1一次)2 —2(1 — a，)”人广卜疽人 2 —4 야/药

= {(1 —a) —//楫}2 — 4町사 (46)

From (45) and (46), we have

I 이 Vll-“시 (47)

The equation (47) indicates that the convergence 

speed of the LFG algorithm is faster than that of 

the LMS algorithm. In addition, since large value 

of a means small value of 丨〃|, the larger the 

value of a is, the faster the convergence speed is.

JV. Comp니ter Simulation R연suits and Dis- 
c 나 ssion

In the previews sections, we have studied the 

asymptiotic convergence behavior of the SLMS 

algorithm and compared the results with those of 

the results with those of other LMS-type 

algorithms. In this section, by computer simu­

lation, we verify the analytical results and inves­

tigate nonstationary characteristics. For our com­

puter simulation, we consider a channel equalizer 

and an adaptive line enhancer (ALE) problems.

In the first place, a channel equalizer is con­

sidered. The receiver of a simplified base-band bi­

nary data transimission system is shown in Fig 1. 

This adaptive equalizer and channel characteristics 

are identical to those used in [191. The channel im-

27

pulse response used in our simulation is given by in 

(48) and W has been set to 3.3 for eigenvalue ratio 

of 21.

=卩/2[1-cos{2，r(z — 2/"}], 1MM3

' 0, otherwise (48)

The output of the channel has been scaled to 

unity power. White Gaussian noise with variance 

of 0.001 has been added to the equalizer input. 

The number of the equalizer weights was 16 and 

all the initial values of them were set to zero. As 

a performance measure of the ADF, we have used 

the MSE estimate that is obtained by computing 

an ensemble average of 500 individual squared er­

ror. First, we discuss the results of computer 

simulation on the convergence speed and

Fig. 1. Base-band data transmission system using an 
adaptive channel equalizer

misadjustment. Fig 2. shows the convergence 

behavior of the conventional LMS algorithm. As 

noted in Introduction, rapid convergence results

(
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in large steady state misadjustment and slow con­

vergence small steady state misadjustment. Fig 

3. shows learning curves of the LMS algorithm 

with “ = 0.0625 and the SLMS algorithm with 卩 

= 0.0625 and a = 0.1 0.3 and, 0.5. As analyzed 

previously, we can see from this figure that con­

vergence speeds of both algorithms are almost 

identical regardless of several values of a, but the 

misadjustment of the SLMS algorithm is smaller.
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Fig. 3. Comparison of the convergence characteristics 
of the LMS and SLMS algorithms

Fig 4. shows that the SLMS algorithm is more 

stable than the LMS algorithm when both algor­

ithm have the same convergence factor. This is 

consistent with the fact that the convergence 

bound of the SLMS algorithm is increased, as 

analyzed in (21). Next, we discuss a 
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Fig. 4. Comparison of the convergence characteristics 
of the LMS and SLMS algorithms when the 
convergence factor is near the convergence 
bound

nonstationary case. Since the mathematical 

analysis of the nonstationary characteristic of an 

adaptive algorithm is very difficult, we investi­

gate it by computer simulation. As for the LMS 

algorithm, a small convergence factor yields poor 

nonstationary performance[3]. This nonstationary 

performance of the LMS algorithm is shown in 

Fig 5. The nonstationary situation for computer 

simulation is as follows. The channel impulse re­

sponse, hi is assumed to be time-varying. For this 

time-varying impulse response, we introduce a 

time-varying Wn instead of a fixed W in (48) as 

follows.

Wn = 0.275 sin(器)+3.]

To obtain optimal weights corresponding to 

time-varying Wn, for every Wn, n — 1,2,...,400, we 

carried out the LMS algorithm where 卩 was ex­

tremely small and the number of adaptations was 

very alrge. Fig 5. shows the change of the 8-th 

componemt of the mean weight vector E[m] 

over time under the nonstationary environment. 

In Fig 5. as mentioned above, it can be observed 

that the weight vector of the system can track 

the optimal weight vector better with a larger 卩
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Fig. 5. Nonstationary characteristics of the LMS algorithm

Fig 6. shows the nonstationary characteristics of 

the SLMS algorithm. As a becomes large, 

tracking capability of the SLMS algorithm 

becomes poor, which may be expected by in­

tuition. Nevertheless, the tracking curves of the 

SLMS algorithm are similar to 나lat of the LMS 

algorithm. In addition, Fig 7. shows that when u 
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is set to be a large value for better tracking, the 

SLMS algorithm keeps more stable track, while 

the LMS algorithm is locally unstable.
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Now, we consider the ALE problem. Fig 8. 

shows the block diagram of ALE. The input to 

the ALE is given as

INPUT

Fig. 8. Block diagram of ALE

— \/2 sin + V12 rn (49)

In (49), " has uniform distribution between -0.5 

and 0.5, and therefore the signal-to-nise ratio 

(SNR) is unity, Fig 9. shows 나忙 output of ALE's 

using the LMS and SLMS algorithms. In Fig 9. 

the vertical line indicates the output of an ideal 

ALE, that is, spectral line with normalized fre* 

quency, / = 0.05. From Fig 9. we can see that the 

ALE using the SLMS algorithm estimates more 

accurate frequency and reduces more wide-band 

noise.

1.2

1.0 -

0.1 0.4 0.5

NORMA니ZED FREQUENCY

Fig. 9. Comparison of the frequency responses of adapt- 
ive filters in ALE using the LMS and SLMS 
algorithms (“ = 0.006, SNR = 1)

(DLMS (2)SLMS(“=0.2) (3)SLMS 伝=0.4)

V. Con이나sions

In this paper, we investigate the asymptotic 

performance of the SLMS algorithm and its 

applications. By re-formulating and analyzing the 

SLMS algorithm by Berman and Feuer, more 

useful results for understanding the algorithm is 

obtained. Since these results have useful forms in 

comparing with other LMS-type algorithms, they 

give some new perspectives on the performance 

of the SLMS algorithms. Especially, it is clearly 

shown that the convergence speed of the SLMS 

algorithm is asymptotically identical to that of 

the LMS algorithm. Furthermore, the SLMS al­
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gorithm is compared with similar algorithms-the 

SGD and LFG algorithms, and the r이ation아lip on 

these algorithms is considered. In comparing with 

the SGD algorithm, we obtain the condition under 

which these two algorithms have the same steady 

state performance. In case of the LFG algorithm, 

the formulation of the 기gorithm is similar to that 

of the SLMS algorithm, but the cvonvergence 

characteristics of the two algorithms are very dif­

ferent. We clearly explain this conflicting 

phenomenon, where we also show that the LFG 

and MLMS algorithms are exactly the same ah 

gorithm.

The analysis performed in this paper is verified 

by computer simulation. According to the com- 

puter simulation for a channel equalization, one 

can see that the SLMS algorithm is more stable 

than the LMS algorithm when a convergence fac­

tor is near the convergence bound. In addition, 

we investigate the nonstationary characteristics 

of the SLMS algorithm. In case of an ALE 

problem, we show that the ALE using the SLMS 

algorithm estimates more accurate frequency and 

reduces more wide-band noise.

APPENDIX

RELATIONSHIP BETWEEN ROOTS OF (19) AND a

Whether the roots of the equation (19) are real 

or complex depends on a value of a, and 

influences the convergence characteristics of the 

algorithm. In case that (19) has real roots, the 

following inequality should be satisfied :

{"지 (1 —a) — (l+a)“一4 次느 0 (Al)

After some manipulation, we may rewrite (Al) as

(必)2 — 2圭*］卩사+120 (A2)

From (A2),

OSMS也 - •很븐糸］2-1 (A3a)

or

「쁘 3［枠戶 栈)

(A3b)

Since "사 is small value, we are interested in 

(A3a). In (A3a), the smaller 卩사 is, the larger 

value a may be allowed. For instance, if "』= ().2, 

the bound of a to allow the equation to have real 

roots is 0.443 and 弘시 = 0.1 the bound is 0.667. In 

practical circumstances,如《1, and the equation, 

therefore, has real roots over a wide range of a.
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