Abstract
This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.