Studies on the Stochastic Generation of Long Term Runoff (1)

장기유출랑의 추계학적 모의 발생에 관한 연구 (I)

  • Published : 1993.09.01

Abstract

It is experienced fact that unreasonable design criterion and unsitable operation management for the agricultural structures including reservoirs based on short terms data of monthly flows have been brought about not only loss of lives, but also enormous property damage. For the solution of this point at issue, this study was conducted to simulate long series of synthetic monthly flows by multi-season first order Markov model with selection of best fitting frequency distribution and to make a comparison of statistical parameters between observed and synthetic flows of six watersheds in Yeong San and Seom Jin river systems. The results obtained through this study can be summarized as follows. 1.Both Gamma and two parameter lognormal distribution were found to be suitable ones for monthly flows in all watersheds by Kolmogorov-Smirnov test while those distributions were judged to be unfitness in Nam Pyeong of Yeong San and Song Jeong and Ab Rog watersheds of Seom Jin river systems in the $\chi$$^2$ goodness of fit test. 2.Most of the arithmetic mean values for synthetic monthly flows simulated by Gamma distribution are much closer to the results of the observed data than those of two parameter lognomal distribution in the applied watersheds. 3.Fluctuation for the coefficient of variation derived by Gamma distribution was shown in general as better agreement with the results of the observed data than that of two parameter lognormal distribution in the applied watersheds both in Yeong San and Seom Jin river systems. Especially, coefficients of variation calculated by Gamma distribution are seemed to be much closer to those of the observed data during July and August. 4.It can be concluded that synthetic monthly flows simulated by Gamma distribution are seemed to be much closer to the observed data than those by two parameter lognormal distribution in the applied watersheds. 5.It is to be desired that multi-season first order Markov model based on Gamma distribution which is confirmed as a good fitting one in this study would be compared with Harmonic synthetic model as a continuation follows.

Keywords