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A RESOURCE-CONSTRAINED JOB SHOP SCHEDULING PROBLEM
WITH GENERAL PRECEDENCE CONSTRAINTS

Jaekyoung Ahn*
ABSTRACT

In this paper, a rule for dispatching operations, named the Most Dissimilar Resources (MDR)
dispatching rule is presented. The MDR dispatching rule has been designed to maximize
utilization of resources in a resource-constrainedd job shop with general precedence constraints,
It shown that solving the above scheduling problem with the MDR dispatching rule is
equivalent to multiple solving of the maximum clique problem. A graph theoretic approach is
used to model the latter problem. The pairwise counting heuristic of computational time com-
plexity O(n?) is developed to solve the maximum clique problem, An attempt is made to com-
bine the MDR dispatching rule with the existing look-ahead dispatching rules. Computational ex-
perience indicates that the combined MDR dispatching rules provide solutions of better quality

and consistency than the dispatching rules tested in a resource-constrained job shop.
1. Introduction

A traditional job shop consists of a set of machines and a collection of jobs that are to be
allocated to machines over a scheduling horizon, The scheduling decisions are generally made
under the following assumptions : 1. Each job involves several operations with a linear precedence
structure (linear precedence constraints), 2. There is only one scarce resource type, i.e. machines
(single resource constraints).

However, typical automated manufacturing system involves alternative routings scarce resources
(eg.. fixtures, pallets, grippers). The growing need for automated manufacturihng systems requires
efficient scheduling schemes reflecting this manufacturing environment. As consequence, a sched-
uling system in a modern manufacturing should ont only accomodatde itself to the environmental

changes, but also provide efficient solutions in a real time.
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In the past decades, extensive studies have been done in the area of scheduling manufacturing
systems, These studies can be divided into two basic categories [Panwalkar and Iskander 19777 : 1.
Theoretical research dealing with optimization procedures 2. Experimental research dealing with
dispatching rules.

The theoretical research has focused on the development of mathematical models and optimal or
suboptimal algorithms (see, for example, Baker [1974], French [1982], Bellman, Esogbue and
Nabeshima [1982]). The results of the theoretical approach have not been widely used in industry
due to the high computational complexity of the scheduling problem. However, the theoretical ap-
proach has its own merit, mainly in capturing the problem structure. It allows an analyst to con-
struct model according to the characteristic of the scheduling environment. The experimental re-
search has been primarily concerned with dispatching rules and heuristic that efficiently solve the
scheduling problem, This approach has appealed to both researchers and practitioners. To date,
over one hundred dispatching rules have been develped. The research on the dispatching rules has
been presented in a number of publications [Gere 1966, Panwalkar and Iskander 1977, Blackstone,
Phillips and Hogg 1982, Alexander 1987, Koulamas and Smith 1988, Schultz 19389, and Kusiak
1990].

Panwalkar and Iskander [1977] classified the dispatching rules into three categories : 1. Simple
dispatching rules, 2. Combination of simple dispatching rules, and 3. Weighted dispatching indexes.
They also recommended that the usefulness of different dispatching rules depend on the specified
performance criteria and it is essential to know the scheduling environment. These observations
strongly suggest that dispatching rules should be devised to reflect the scheduling environment. In
the same context, Koulamas and Smith [1988] presented a simple look-ahead dispatching rule for
scheduling two or more parallel semiautomatic machines sharing the same server. Schultz [1989]
presented a new dispatching rule that has proven to be effective over a wide range of due dates.
Alexander [1987] developed an expert system for selection of dispatching rules for a job shop ac-
cording to different performance criteria, and different operating conditions.

Although most of the papers published in the literature are rather restricted, attempts have
been made to relax the linear precedence constraints and the single resource constraint [Wiest
1967, Fendley 1968, Pritsker et al. 1969, Davis 1973, Davis and Patterson 1975, Hogg, Phillips, and
Maggard 1977, Lloyd 1981, Monma 1982, Patterson 1973, 1976, 1984]. Among these, the dual re-
source constrained (DRC) scheduling problem and the resource constrained project (RCP) schedul-
ing problem need to be mentioned here. In the DRC shceduling problem, the availability of
workers is a constraining factor as well as the availability of machines. There has been far too
limited studies on the DRC problem to determine whether the more complex dispatching rules are

useful for solving it [Blackstone, Phillips and Hogg 1982]. The RCP shceduling problem contains
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both types of constraints that characterize scheduling decisions [Baker 1974]. One of the major
differences between the job shop and the RCP scheduling problemns is the continuous work input
and flow in the job shop [Davis 1973].

In this paper, a dispatching rule which is able to cope with a multi-resource manufacturing en-
vironment is developed. The need to develop such a rule stems from salient features of automated
manufacturing systems. One of these features relates to multiple resources used, such as machines,
fixtures, pallets, tools, etc. The proposed MDR (Most Dissimilar Resources) dispatching rule
considers all these manufacturing resources. The shceduling problem in a resource constrained job
shop with gengeal percedence constraints is described and analyzed in section 2. The MDR
dispatching rule is defined in section 3. In section 4, the performance of combined MDR
dispatching rules relative to the existing rules are evaluated for a static and dynamic case. The

conclustions are presented in section 5.

2. THE PROBLEM STATEMENT

In order to formulate a static resource-constrainedd scheduling problem, the follwoing notation in

used :
1 part index, i=1, -, n
k :operation index, k=1, -, m

n : number of parts

m : number of operations

r :resource index, r=1, -, r,

r. : number of resources r of type ¢

C :resource type inex

¢ : ' resource of type c

O, : set of operations of part 1

G, : set of pairs of operations [k,/] of part i, where k precedes [

Q : set of pairs of operations [k,/] of part i, where k and [ can be performed in any order
[l;=ic"} : set of resources used by operation k, where ¢ is a resource r of type ¢
ty I processing time of operation k of part i

fi. : completion time of operation k of part 1

T : makespan

M : arbitrary large number
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1, if operation k precedes operation [
Xy ™
0, otherwise
The objective of the static scheduling problem is to minimize the makespan.
(P) Min T (1)
subject to
fi-ty = 1 (k,/]€G, for all i (2)
fi -ty = fix - Mxy [k,/]eQ for all i (3)
f,[ -ty = f;k - MX[k ZEO‘, kEO,, for all i, j, l?éj, and l'Ikﬂl'I;¢¢ (4)
Xe + Xp =1 for all k, 1 such that T, NIL#¢ , k#/, or [k,/1€Q for all i (5)
fi < T for all i, k (6)
fo = tu for all i, k (7
X0, 1 for all k, { such that M, NIL#¢ k#I, or [k,{]eQ for all i (8)

Constraint (2) ensures that the operations belonging to a part are processed according to the
required precedences. Constraint (3) implies that any two operations of the same part cannot be
processed at the same tiem. Constraint (4) implies that a resource can be used by only one oper-
ation at a time, Constraints (5) imposes a precedence between a pair of operations. Constraint (6)
implies that the completion time of each operation is not greater than the makespan. Constraint
(7) implies that the completion time of each operation is not less than its processing time. Con-
straint (8) imposes integrality.

Problem (P) is a variant of the problem of schedduling n operations on m machines discussed in
Kusiak [1990, pp.367~381]. It considers simultacous use of multiple resources for processing each
operation.

Lenstra[1977] classified machine scheduling problems using four parameters, such as number of
operations, number of jobs, machine environment, and optimality criteria. Graham et al. [1979]
introduced three classification schemes for resource constrained scheduling problems in which a
problem has a three-field notation that represents machine environment, job characteristics, and
optimization criteria, Blazewicz, Lenstra, and Rinnooy Kan[1983] considered an extension of this
classification by allowing for the presence of more than one scarce resource.

To clearly envision the computational complexity of the resource constrained scheduling problem
with general precedence constraints, it may be useful to represent it using the classification
scheme introduced by Blazewicz, Lenstra, and Rinnooy Kan{1983]. The machine environment of
the problem is x=]J, i.e., the problem is a general job shop. Job characteristics, iff,, f.. fs Bu are

as follows :
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Bi=¢ : no preemption is allowed,
p.=resiop where 2=, ie., the number of resources is a component of the input,
g=1, li.e,, all resource sizes are equal to 1,
p=1, ie., all resource requirements are equal to 1,
Bs=prec : each operation in a part has general precedence constraints (This notation differs from
the notation in Blazewicz et al.[1983], where they referred to ‘prec’ as a relation be-
tween jobs rather than operations),

fi=¢ : the processing times are arbitrary nonegative integers.

The objective function y=C,,, is the minimization of the makespan. Thus, the static scheduling
problem considered in this paper can be classified as J|res-11, prec|Cu in the multi-operation
model. A simplified job shop shop version of problem (P), J[reslll, P,=1|Cuu is proven to be
NP-hardd in a strong sense [Blazewicz, Lenstra, and Rinnooy Kan 1983]. Therefore, it is not likely
that there exists a polynomial time algorithm for sloving problem(P).

Extensive research focusing on the resource-constrained multiproject (RCMP) scheduling and
job shop scheduling problem with multiple resources, has been done over many years [e.g., Wiest
1967, Fendley 1968, Pritsker et al. 1969, Davis 1973, Davis and Patterson 1975, Lloyd 1981, Monma
1982, Patterson 1973, 1976, 1984]. Patterson [1973, 1976] discussed the effectiveness of many of
the heuristic extensions to the critical path method which resolve the resource conflicts for a
large RCMP scheduling problem. He tested the performance of a number of dispatching rules
proposed in the literature, and examined the RCMP problem in an attempt to assess the quality of
solutions generated with heuristic methods. The RCMP scheduling problem shares the following
parameters with the problem presented in this paper : 1. Resources of different types are con-
sidered. 2. Each job (project) consists of a number of operations (takes) with general precedence
constraints,

As mentioned in Section 1, the job shop scheduling environment is of dynamic nature. The most
promising dispatching rules for solving the RCMP scheduling problem which are based on the
critical path method might require a considerable computation time in the job shop environment
because of the necessity of periodic recalculation of the critical path and slack data [ Wiest 1967].
Moreover, any two operations in a part cannot be processed at the same time in the manufactur-
ing system due to physical constraints, while any two tasks in a project can be processed simul-
taneously if some resource constraints are met. The physical constraints need some attention in
the following aspect. The delay of an activity in a critical path causes an equal delay in the com-

pletion of the project (part). In this sense, all the operations in the manufacturing system become
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critical activities because any delay in completion of an operation results in an equal delay of the
job completion. Thus, the physical constraints in the job shop environment may cause dispatching
rules based on the critical path method to loose its benefits when applied to manufacturing
systems.

The common ground on which the two problems are based. however, indicates that it is ben-
eficial to consider the most promising RCMP dispatching rules for solving the problem considered
in this paper. To solve problem (P), a new dispatching rule {(the MDR rule) is propoesed, and is
combined with the existing dispatching rules. The rule allows for dynamic solving of the schedul-

ing problem,

3. THE MDR DISPATCHING RULE

The Most Dissimilar Resources (MDR) dispatching rule has been developed for efficient schedul-
ing of operations in a resource constrained job shop environment (eg., an automated manufacturing
system) where the maximization of the utilization rate of manufacturing resources is a major con-
cern because of the following : 1. Considerable capital investment needed to install the system. 2.
Production is lost when the manufacturing resources are idle. 3. Scheduling with minimum
makespan and minimum tardiness criteria tends implicitly to maximize resource utilization over the
{(unspecified) scheduling time horizon [Rodammer and White 1983]. The basic idea behind the
MDR priority rule is presented next.

3.1 Graph-Theoretical Formulation

1) Operation-resource incidence matrix
Consider a manufacturing system with 3 parts and 7 operations to be machined. The resources

required by each operation are given in Table 1.

Table 1. Resource required for manufacturing three parts

Part No, Operation Machine Tool Fixture

0 m, t f)

1
(¢ my to 2
o Iy ty fy

2 O ms ty 1:l
(¢ my t; fé
Oy my, 1, s
0: m- t f,
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The data in Table 1 are presented in the form of incidence matrix (9) which is more concenient

for further considerations.

Resource

Machine Tool Fixture

m  m omy t t. t; f, f, f3 fy

Part1 o [1 0 0 1 0 0 1 0 0 0
o |0 1 0 0o 1 0 0o 1 0 0
4 {0 0 1 0 0 1 0 0 1 0
my]= Part2 o [0 1 0 0 O 1 0 o0 0 1 (9)
o]0 o0 1 0 1 0 o0 0 1 0
Part3 o |1 0O 0 0 1 0 0 1 0 0
o Lo 1 0 1 0o o o o 1 ol

In matrix(9), each entry

1, if operation k uses resource r
mkr =
0, otherwise

For any two operations k and j, define a distance measure, dy @

r
ko = El d(mkm mlq)
q—

1, if mg my = 1, k#j, for keQ, j€Q, i#i’
where d(my, m,) = 4 N, if k=] or (k, j)€Q (10

0, otherwise

In the expression (10), N is any positive number. For the further use in this study, a
schedulable operation is defined. An operation o, is schedulable at time t, if [Kusiak 1990] :

1. No other operation that belongs to the same part is being processed at time t

2. All operations preceding operation ok have been completed before time t

3. All resources required by the process plan to perform operation ok are available at time t.

Assume that the seven operations in matrix (9) are schedulable. The MDR dispatching rule

selects from the matrix (9) the largest set of schedulable operations which satisfies the following

conditions :
1. Each operation belongs to a distinct part,

Le., more than one operation in a part cannot be processed at the same time,
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2. All the operations in the set can be processed at the same time,

L.e., there is no resource conflict.

2) Operation-resource graph

The problem of selecting operations according to the MDR priority rule can also be represented

with an operation-resource graph, G.

Let G(V,E,y) be a graph, where :
V :a set of schedulable operations

E : a set of incidence relations among the schedulable operations

¥ ¥(e)=vv, if }:l my, M,=0, and v, and v, do not belong to the same part.
pe

A 3-partite operation-resource graph corresponding to matrix (9) is shown in

Figure 1. A 3-partite operation-resource graph

For n parts, the operation-resource graph becomes an n-partite graph and is not necessarily complete.
In the operation-resource graph, each edge indicates the nodes (operations) that can be processed simul-
taneously, i.e., the nodes that do not share the same resources, Note that the MDR dispatching rule
selects the largest set of nodes such that each node in the set belongs to a distinct part and there is no
resource conflict between the nodes in the set.

A clique of a simple graph, G, is defined as a subset S of V such that G[S] is complete [Bondy and
Murty 1976]. Thus, a clique in the operationresource graph satisfies the conditions under which the

MDR dispatching rule selects the schedulable operations from the operation-resource incidence matrix,
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and the maximum clique in the graph corresponds to the largest set of schedulable operations from
the incidence matrix. Therefore, selecting operations with the MDR priority rule is equivalent to
the problem of finding the maximum clique in the operation-resource graph, G. The preceding

concepts are illustrated in Example 1.

Example 1

Given the operation-resource incidence matrix (11).

Resource
Machine Tool Fixture

m  m my t ts ts f f, f3 f,
Part 1 o |1 0 0 1 0 0 1 0 0 0 ]
Part 2 0y 0 1 0 0 1 0 0 1 0 0
Part 3 03 0 0 1 0 0 1 0 0 1 0

[m,] = Part 4 0y 0 1 0 0 0 1 0 0 0 1 (1)

Part 5 05 0 0 1 0 1 0 0 0 1 0
Pat6 o L1 0 0 0 1 0 o0 1 0 0

For simplicity, assume that each schedulable operation belongs to a distinct part. The operation-

resource graph, G[V,E,¥], corresponding to matrix (11) is shown in Figure 2,

Figure 2. Operation-resource graph of the incience matrix(11)

Two maximum cliques are visible in Figure 2, namely, {0, 0. o and {0, 05, 0s). The two sets
represent the largest set of schedulable operations that can be processed at the same time, The

problem of finding a maximum clique in a graph is NP-complete [Garey and Johnson 1979].
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3.2 The Pairwise Counting Heuristic

Since the MDR priority rule is to be used in real time scheduling, it is important that the maxi-
mum clique problem is solved almost instantaneously. A general integer programming code, such as
LINDO, is not likely to meet the latter requirement for the problem sizes encountered in industry.
A more efficient way to solve the maximum clique problem is to use a specialized algorithm,

To date, a number of exact and heuristic algorithms leg., Horowitz and Sahni 1978,
Papadimitriou and Steiglitz 1982, Balas and Yu 1986] have been developed for solving the maxi-
mum clique problem. A simple pairwise counting heuristic of computational time complexity O(n?)
is presented below.

Before the algorithm will be presented, the following notation is introduced :

P : a set of operations to be dispatched

D,(k) : distance index of operation k, defined as the number of 0's in the k™ column in the dis-

tance matrix

Dy(k) : distance index of operation k, defined as the number of parts in which the number of 0’s

in the k™ column in the distance matrix is greater than 1.
The algorithm constructs a set of operations to be dispatched, P, from a set of schedulable

operations, S.

Algorithm

Step 0. Initialize the set of schedulable operations, S, and the set of operations to be dispatched
(P=¢).

Step 1. If S#¢ , then go to Step 2, otherwise, STOP.

Step 2. From the set of schedulable operations, S, construct the operation-resource incidence
matrix {my .

Step 3. From the operation-resource incidence matrix [my, ], construct the distance matrix [dy].

Step 4. For each operation k€S, compute the distance index D(k) from the operation-resource
incidence matrix [my].

Step 5. Find maximum D{(k*).
If a tie occurs, break it, arbitrary.

Step 6. Move operation k* to P.

Step 7. Update the set of schedulable operations :
a) Delete operation k* from S.
b) Delete the operations which belong to the same part as the operation k* from S.
¢) Delete the operations which share the same resources with the operation k* from S.

Step 8. Go to Step 1.
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3.3 Two distance indexes

Using a graph theoretic approach, the two distance indexes mentioned can be interpreted as

follows :

Di(k) : the number of edges incident to node k in the operation-resource graph

D.(k) : the number of partitioned subsets incident to node k in the n-partite operation-resource
graph.

Papadimitriou and Steiglitz [1982, pp.406~407] used the distance index, Dy(k) for solving the
minimum node covering problem., The distance index, D;(k), used in the pairwise counting heuris-
tic has some disadvantages, namely, for an operation k, its value increases by more than one in
the following cases :

1. Operation j, and 1 belong to the same part.

2. Operation k belongs to a different part than the part that includes operations j and /.

3. dy, =0, and dw = 0.

Note that operations k, j, and / cannot be processed at the same time because of the case 1.
This is due to the fact that more than one operations in a part cannot be processed at the same
time (physical constraints). Therefore, the distance index, Di(k), for the operation k should be
increased by only one under the above conditions.

Based on the graphic representation of the MDR dispatching rule, the advantage of using D.(k)
over D.(k) is explained next. The MDR dispatching rule attempts to find the maximum clique in
the n-partite operation resource graph whenever a dispatching decision is required. It is obvious
that any two operations in a part cannot belong to the same clique, so that the maximum number
of operations in a part for a clique is 1. Thus, the distance index, D.(k), takes advantage of the
nature of the n-partite operation resource graph.

The distance indexes, D;(k) and D.(k), are illustrated in Example 2.

Example 2

Consider the resource-operation matrix (12).

Resource
Machine Tool Fixture

m m; my my t to ty ty 1) f, fy f,

Part 1 0y 1 0 0 0 0 1 0 0 0 0 1 0

0y 0 0 0 1 0 0 0 1 0 0 0 1

03 0 1 0 0 1 0 0 0 0 1 0 0

[m,] = Part?2 o, 1 0 0 0 0 0 1 0 0 1 0 0 (12)

05 0 0 1 0 0 1 0 0 1 0 0 0

Part 3 04 0 0 1 0 0 0 1 0 0 0 0 1
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For the mitrix (12), the distance matrix (13) is computed.

Operation
0 0 03 04 05 O
Part 1 oo TM M 0 1 1 0
02 M M 0 0 0 1
03 0 0 M M M 0
Part2 o [ 1 0 M M M 1 (13)
0Os 1 0 M M M 1
Part 3 0 t 0 1 0 1 1 M-

The distance index, D;(k), has the following values :
Di(1)=2, D\(2)=3,
Di(3)=3, D\(4)=1,
Di(5)=2, Di(6)=2.

The maximum value of the distance index, Dy(k) is attained for operations 2 and 3.

If, in step 5 of the pairwise counting algorithm, operation 2 is selected, then the resulting set of
operations to be dispatched is P,=12, 3{, P,=1{2, 4}, or P,={2, 5}. This means that the algorithm
finds at most two operations which can be processed at the same time. In the case when oper-
ation 3 is selected in step 5 of the algorithm, then the resulting set of operations to be dispatched
becomes P={1, 3, 6}. This results from the overestimation of D.(2), ie., the value of D(2)
increases by three even though operations 3, 4, and 5 belong to the same part, The use of the dis-
tance index, D.(k) leads to the set of operations to be dispatched in the final solution, P==1,3,6}.
In the subsequent sections, the distance index, D.(k) will be used in the pairwise counting algor-

ithm,

3.4 The Combined MDR Rule

In the real-time scheduling environment, schedules are usually determined by dispatching an op-
eration whenever a decision is required. For instance, the MDR rule dispatches an operation which
could be processed with as many as possible other operations at the same time while COVERT
rule dispatches an operation which has a potential of being late. In a sense, dispatching an oper-
ation affects not only the schedulable operations that can be processed simultaneously at a speci-
fied time, but also the entire set of operations in the subsequent scheduling horizon. Depending on

the information that is used, the dispatching rules can be categorized as following :
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1. Myopic dispatching rules dispatch an operation with the local information whenever a decision
i1s made. They include MDR, SPT, LPT, Greatest Total Work, FCFS, and so on.

2. Look-ahead dispatching rules dispatch an operation with the look-ahead information whenever
a decision is made. They include MWR, EDD, Minslack, COVERT, and so on. Most of the
due date related dispatching rules fall into this category.

It is likely that the most ideal dispatching rule for the problem considered in this paper should
use the myopic resource information as well as the look-ahead information. Panwalker and
Iskander [1977] indicated that a combination of simple dispatching rules, or a combination of
heuristics works better than individual priority rules, However, the combination procedure for
dispatching rules is not an easy task. The most frequently used combination methods are based on
assigning weights to dispatching rules that are combined. Finding of proper weights (the
normalization procedure) requires extensive simulation tests and is difficult to justify. Kusiak
[1990] combined seven dispatching rules in a serial way. Since each rule may not provide a tie
among operations, the first dispatching rule used predominantly governs the search process.

In this paper, the MDR dispatching rule (myopic) is combined with promising look-ahead
dispatching rules. Since the MDR dispatching rule quite frequently provides a tie among

operations, the myopic information as well as look-ahead information are combined.

4. COMPUTATIONAL EXPERIENCE

This section involves testing various dispatching rules that determine which operations should
have preference whenever there is a potential conflict of resources in the presence of precedence

and physical constraints,

4.1 Dispatching Rules

The following notation is used in this section :

t @ current time

U, : set of operations succeeding operation k in G,

Gi :set of pairs of operations [k,/] of part i, where k precedes /
Vi tset of unprocessed operations of part i except operation k
di : due date of part i

slk @ slack of operation k,

Slk:dl't- : ty
1€V

cilpr, p2) :expected delay penalty for operation k,
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1, if sk<0

Ck(ph pz) =

O, if SlkZ z ty
le Vi

P poti - sk

1€ Vik

Y. prpotu

le Vi

, otherwise

In order to evaluate the equality of schedules, the dispatching rules shown in Table 2 and 3

have been tested.

Table 2. Non-due date related dispatching rules and priority indexes for operation k of part i

Rule number Rule name Max /Min Priority index

R, Most Dissimilar Resource Max D(k)
R, Most Subsequent Work Remaining Max l;u( ty
R, Most Subsequent Operations Remaining Max [ Uil
R, Most Work Remaining Max /;w ti
R; Most Operation Remaining Max Vil
Rs Shortest Processing Time Min t

R; Longest Processing Time Max tix

R, Lease Work Remaining Min I;vktll

Table 3. Due date related dispatching rules and priority indexes for operation k of part i

Rule number Rule name Max /Min Priority index
Ry Minimum Slack Remaining Min sly
. . . d-t
Ry Remaining Allowance per Operation Min A
*
. . di-t-ti
Ry Slack per Operation Min A
ik
dv't_th
Ry Slack per Remaining Work Min Tt
RN
Ry COVER 1 Max -C“%?)—
(3,2
Ru COVER 2 MAX C“—(j:—)—
1k
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The dispatching rules R, and R; are equivalent to R, and R, respectively, under the linear pre-
cedence assumption. The dispatching rules R, and R; are related to the “look-ahead” rules. The
SPT dispatching rule, Ry, is one of the most often studied and performs best relative to the mean
flowtime criterion, The dispatching rule, R, tends to minimize the cycle time of each part.

Among non-due date related dispatching rules in Table 2, there is only one rule (the MDR rule)
that takes into account resource utilization. Patterson [1973] introduced four resource related
dispatching rules in the RCP scheduling problem. These are : the GTRD (Greatest Total Resource
Demand), GRRD (Greatest Remaining Resource Demand), GRU (Greatest Resource Utilization),
and MJP (Most Jobs Possible) dispatching rules. Normally, an operation in a job shop environ-
ment requires one unit of resource of each resource type (eg., operation 1 is processed on machine
2, clamped in fixture 5, placed on pallet 3). Furthermore, resources in a resource type are not in-
terchangeable (i.e., a drilling operation can be processed only on a drilling machine, not on other
machine). Therefore four dispatching rules introduced by Patterson [1973] need some modifications
in order to apply them for scheduling of manufacturing systems,

The GTRD dispatching rule selects an operation with the greatest resource usage. For the prob-
lem considered in this paper, it becomes a random rule since it is assumed that the number of re-
source types required by each operation is identical. The GRRD dispatching rule becomes the
Most Work Remaining dispatching rule, R4, since the rule selects an operation with the greatest
remaining resources required. The GRU dispatching rule selects a set of operations which
maximize utilization of available resources, solved as a zero-one integer programming problem. The
MJP dispatching rule selects a set of cperations which maximize the number of parts being
worked on, solved as a zero-one integer programming problem as well (Patterson [1976] showed
that the MJP and the GRU dispatching rules perform good for the measures of total project
delays and total weighted project delays). The two above dispatching rules can be easily
transformed into the maximum clique problem in a resource-constrained job shop (the definition of
common units for different types of resources are necessary).

The Minimum Slack Remaining dispatching rule, R, utilizes the processing time information but
in a way that it actually counteracts benefits from the SPT rule. One of the factors in measuring
the urgency of a part is the number -of operations remaining for the part. When two parts have
the same remaining work, the part with the largest number of operations is intuitively more ur-
gent. This reasoning has led to the dispatching rules, Remaining Allowances per Operation (Rj,)
and Slack per Operation (R,)), The Slack per Remaining Work rule aims at taking advantage of
the SPT strategy when two parts have the same minimum slack remaining. The most promising

dispatching rule when due dates are imposed is the COVERT rule proposed by Carroll [1965]. In
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this paper, two COVERT dispatching rules with different parameters are tested. The slack
parameters, p; and p., are fixed throughout the computational experiment. For detailed description
of the due date related dispatching rules, see Baker [1974] and Vepsalainen and Morton [1987].
The combinations of the MDR rule and other dispatching rules are listed as R, (MDR+R)).

4.2 Shop Conditions

To test the performance of each of the dispatching rules in the static job shop, 9 different

scheduling problems are considered as shown in Table 4.

Table 4. Characteristics of the static problems

Problem | Problem No. of No. of Number of Resources No. of
No. Size Parts Op'ns Machines | Fixtures Pallets Tools Runs
1 3 3 5 5 10
2 Small 5 30 3 3 20 15 10
3 3 15 20 15 10
4 5 3 8 8 10
5 Medium 8 80 5 5 60 20 10
6 5 16 60 20 10
7 16 20 30 20 10
8 Large 30 300 16 20 200 70 10
9 16 50 200 70 10

For each problem, 10 instances were solved. The routings are those of a job shop with general
precedence constraints. The processing times were generated according to the discrete uniform dis-
tribution with parameters [1,10]. Due date for each part is twice the processing time. This follows
from the fact that the TWK based due date assignment is a reliable and effective method for set-
ting due dates [Baker 1984]. Static problems are divided into the following categories :

1 : All the resource types are scarce (problem No. 1, 4. and 7)

Il : Two of the resource types are scarce (problem No. 2, 5, and 8)

[l : One of the resource type is scarce (problem No. 3, 6,and 9)
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In the dynamic job shop, the number of jobs arriving in an interval of given length (60 unit

time) is Poisson-distributed. The arrival rate (/) of this process is given as follows :

/.

. — No. of machines(bottleneck resources

) x Estimated system utilization rate

Avg. No. of operations per part x Avg. processing time of an operation

Nine different problems shown in Table 5 are considered, For each problem, 10 instances were

solved, where scheduling was observed until all 100 parts had been completed.

Table 5. Characteristics of the dynamic problems

PrLoiigm Light-Load(LL) u=0.6 Normal-Load(NL) u=0.8 Heavy-Load(HL) u=0.9
1 [3,7]/(10,100,15,40] /0.12* | [3,71/(10,100,15,40] /0.16 | [3,7]/[10,100,15.40] /0.18
2 | [812]/[15150,23,60] /0.09 | [8,12]/[15,150,23,60] /0.12 | [8,12] /[15,150,23,601/0.135
3 [18.22] /140,400,60,120] /0.12 | [18,22] /[40,400,60,1201 /0.16 | [18,22] /40,400,60,120] /0.18
*a/B/y

x - parameter of the uniform distribution that represents the number of operations per part
f - number of resources available ([machines, tools, fixtures, pallets])

7 arrival rate of the Poisson distribution  on

The processing times in the dynamic job shop problem were generated with the uniform distri-
bution [5,15]. Due dates were assigned randomly with an average of 3 times the processing time
of each part,

Vepsalainen and Morton [1987] simulated a job shop with a fixed number of machine, and
suggested normalization procedures of the solutions generated for a set of scheduling problems
with different number of parts, average number of operations per part, average processing time of
an operation and weighted cost. Besides these factors, number of bottleneck resources of different
types in a job shop can be considered. In our computational experiments, average processing time
of an operation (in a static and a dynamic job shop, respectively) and weighted cost factors were
set to be the same, and machines were assumed to be the bottleneck resource.

Two normalized performance measures for parts and five measures for schedules (runs) are con-

sidered :

- Normalized Average Waiting (AW) time
rmét(hlm' é AW

1

n'- My R

AW =
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where : rmanne 15 the number of machines

M. i5 the average number of operations in a part n = %
— v L1 Sum of Processing Time :
AW, = 2 5 ( Work -In-System Time )1

R is the number of runs

- Normalized Average Flow(AF) time

rmac ine R AE
AF = —" -8 (15)
n' My,

where : AF, = 21% (Flowtime),

- Normalized Average Markespan{ AM)

=

T machine < ]
- ot

N Meg &1

&
=

where : T, is the makespan in the j" run

. Normalized Average Percent Tardiness(PT)

Tmachine YR, P ’[}

PT = Y
T nom. = R (17)
where : PT, is the pérentage tardy parts in the j" run
. Normalized Average Maximum Tardiness(MT)
machine R MT
MT = ot YR ! (18)
n Mg 71
where : MT, is the maximum tardiness in the i run
- Normalized Average Tarddiness(AT)
machine R AT
AT = —me v S (19)
n My -1
where : AT, is the average tardiness in the ;" run
- Normalized Conditional Average Tardiness(CAT)
machine R CAT
CAT = —= - o (20)

N My

where : CAT, is the conditional average tardiness in the i™ run
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All the performance measures listed above((14)-(20)) have been used for the static job shop,
and the performance measures (14) and (17)-(20), for the dynamic job shop. In the static job
shop, as the number of scarce resource types increases, performance of the combined MDR
dispatching rule improves. In the dynamic job shop, the combined MDR dispatching rules produce
solutions of better quality for the light and heavy shop load. In most of cases solved, the
combined MDR dispatching rule outperforms the corresponding single dispatching rule (191 out of
228 cases). Table 6 and 7 summarizes the solutions obtained by the combined MDR dispatching

rules for the performance measures considered in each problem category.

Table 6. Number of superior solutions generated by the combined MDR rules
for non due date related performance measures

Static Shop Dynamic Shop
AW(14) AF(15) AM(16) AW(14)
Ruo 3/3* 3/3 2/3 3/3
Rums 3/3 3/3 2/3 3/3
R 2/3 3/3 3/3 3/3
Rus 3/3 3/3 3/3 3/3
R 3/3 2/3 3/3 3/3
Ru: 2/3 2/3 2/3 3/3
Ris 0/3 3/3 3/3 1/3

* Number of superior solutions generated by the combinedd MDR rule /Total number of solutions

Table 7. Number of superior solutions generated by the combined MDR rules
for due datdd related performance measures

Static Sop Dynamic Shop
PT(17) | MT(18) | AT(19) | CAT(20) | PT(17) | MT(18) AT(19) | CAT(20)
Ry 2/3 1/3 2/3 2/3 3/3 2/3 3/3 2/3
R 273 2/3 2/3" 2/3 373 3/3 3/3 373
Ruu 3/3 3/3 3/3 2/3 3/3 3/3 3/3 3/3
R 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
Rt 3/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3
R 3/3 2/3 3/3 2/3 1/3 1/2 3/3 1/3

+ Represents a tie
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5. CONCLUSIONS

In the paper, the MDR (Most Dissimilar Resources) dispatching rule aimed for the maximum
utilization of resources in a resource-constrained job shop with general precedence constraints was
developed. The rule considers the usage of multiple manufacturing resources, i.e., machines, tools,
and fixtures, Other resources can be easily incorporated. The problem of scheduling operations
with the MDR rule was found to be equivalent to a series of maximum clique problems. A graph
theoretic formulation was developed for the maximum clique problem. Due to the NP completeness
of the problem, a pairwise counting heuristic was developed.

The testing effort was focused on solving a set of 900 static scheduling problems and 90 dy-
namic problems obtained for randomly generated data sets. The combined MDR dispatching rules
provide solutions of better quality and consistency than any other single dispatching rule in a re-

source-constrained job shop.
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