ASYMPTOTICS OF A CLASS OF ITERATED RANDOM MAPS

CHANHO LEE

1. Introduction

Let (S, ρ) be a metric space, Γ a set of measurable maps on S into itself, \Im a σ -field on Γ such that the map $(\gamma, x) \to \gamma(x)$ is measurable on $(\Gamma \times S, \Im \otimes \mathcal{B}(S))$ into $(S, \mathcal{B}(S))$. Let \mathbf{P} be a probability measure on (Γ, \Im) . On some probability space (Ω, \mathcal{F}, Q) define a sequence of i.i.d. random maps $\alpha_1, \alpha_2, ...$ with common distribution \mathbf{P} . For a given random variable X_0 , independent of the sequence α_n , define $X_1 = \alpha_1 X_0, \cdots, X_n = \alpha_n X_{n-1} = \alpha_n \cdots \alpha_1 X_0$. Then X_n is a Markov process with transition probability p(x, dy) given by

(1)
$$p(x,B) = \mathbf{P}(\{\gamma \in \Gamma; \gamma(x) \in B\}), x \in S, B \in \mathcal{B}(S).$$

We often write $X_n(x)$ for X_n in case $X_0 = x$. Denote by \mathbf{P}^n the joint distribution of $\alpha_1, \dots, \alpha_n$, i.e., $\mathbf{P}^n = \mathbf{P} \times \dots \times \mathbf{P}$ on $(\Gamma^n, \Im^{\otimes n})$

A Probability measure π on $(S, \mathcal{B}(S))$ is said to be *invariant* for p if $\pi(B) = \int p(x, B)\pi(dx)$, $B \in \mathcal{B}(S)$. We shall write $p^{(n)}(x, dy)$ for the n-step transition probability with $p^{(1)} = p$. Then $p^{(n)}(x, dy)$ is the distribution of $\alpha_n \cdots \alpha_1 x$.

In this article S is a topologically complete subspace of \mathbb{R}^1 i.e., the relativized topology on S may be metrized so as to make S complete. $\mathcal{B}(S)$ is the Borel σ -field of S.

For Γ one takes a set of measurable monotone (increasing or dereasing) functions on S into itself.

Make the assumption on **P**:

There exists x_0 and a positive integer n_0 such that

$$Q(X_{n_0}(x) \le x_0 \quad \forall x) > 0, \quad Q(X_{n_0}(x) \ge x_0 \quad \forall x) > 0.$$

Received May 18, 1992. Revised Jan. 18, 1993.

This defines a topology on $\mathcal{P}(S)$ that is stronger than the weak-star topology.

Our main result is

THEOREM 2.1. Suppose there exists a positive n_0 and some $x_0 \in S$ such that (2) holds. Then there exists a unique invariant probability π for p(x, dy) (and $p^{(n)}(x, dy)$ converges exponentially fast to π in the d-metric, uniformly in x).

First we state a lemma proved by Bhattacharya (1988) as follows.

LEMMA 2.2. The space $\mathcal{P}(S)$ is complete under the distance d defined by (3).

Proof. It is known that $\mathcal{P}(S)$ is topologically complete under the weak-star topology [Parthasarthy (1967),p.26], which is weaker than its topology under d. Hence if μ_n is a sequence in $\mathcal{P}(S)$ such that $d(\mu_n, \mu_m) \to 0$ as $n, m \to \infty$, then there exists $\mu \in \mathcal{P}(S)$ such that u_n converges weak-star to μ . Fix a continuous monotone nondecreasing γ on S into S and write F_n and F for the cumulative distribution functions of $\mu_n \circ \gamma^{-1}$ and $\mu \circ \gamma^{-1}$, respectively. Then $F_n(x)$ converges to F(x) at all points of continuity of F. On the other hand, $\sup\{|F_n(x) - F_m(x)| : x \in \mathbf{R}^1\} \le d(\mu_n, \mu_m)$. Hence F_n converges uniformly to a function that is necessarily right continuous. This implies that this limit function is F and that $F_n(x)$ converges to F(x) uniform for all x. This being true for every continuous nondecreasing $\gamma, \mu_n(A)$ converges to $\mu(A)$ for every $A \in \mathcal{A}$. But μ_n converges uniformly on \mathcal{A} . Hence $d(\mu_n, \mu) \to 0$.

We notice that the lemma still works for the case of continuous monotone (increasing or decreasing) maps.

Proof of the theorem 2.1. First of all $\gamma^{-1}\mathcal{A} \subset \mathcal{A} \ \forall \gamma \in \Gamma$, outside a set of zero P-probability, and thus, by (3),

$$d(\mu \circ \gamma^{-1}, \nu \circ \gamma^{-1}) = \sup_{A \in \mathcal{A}} |\mu(\gamma^{-1}A) - \nu(\gamma^{-1}A)| \le d(\mu, \nu),$$

i.e., $\mu \to \mu \circ \gamma^{-1}$ is a contraction. Define the (adjoint) operator T^* acting on $\mathcal{P}(S)$ by

$$(T^*\mu)(B) = \int p(x,B)\mu(dx).$$

Therefore, for $A \in \mathcal{A}_1 \cup \mathcal{A}_4$,

$$|T^{*n_0}\mu(A) - T^{*n_0}\nu(A)|$$

$$\leq \int_{\Gamma^{n_0}} |\mu((\gamma_{n_0} \cdots \gamma_1)^{-1}A) - \nu((\gamma_{n_0} \cdots \gamma_1)^{-1}A)| \mathbf{P}^{n_0}(d\gamma_1 \cdots d\gamma_{n_0})$$

$$\leq \int_{\Gamma_1} |\mu((\gamma_{n_0} \cdots \gamma_1)^{-1}A) - \nu((\gamma_{n_0} \cdots \gamma_1)^{-1}A)| P^{n_0}(d\gamma_1 \cdots d\gamma_{n_0})$$

$$+ \int_{\Gamma^{n_0} \setminus \Gamma_1} |\mu((\gamma_{n_0} \cdots \gamma_1)^{-1}A) - \nu((\gamma_{n_0} \cdots \gamma_1)^{-1}A)| P^{n_0}(d\gamma_1 \cdots d\gamma_{n_0})$$

$$= \int_{\Gamma^{n_0} \setminus \Gamma_1} |\mu((\gamma_{n_0} \cdots \gamma_1)^{-1}A) - \nu((\gamma_{n_0} \cdots \gamma_1)^{-1}A)| P^{n_0}(d\gamma_1 \cdots d\gamma_{n_0})$$

$$\leq (1 - \mathbf{P}^{n_0}(\Gamma_1)) \cdot d(\mu, \nu).$$

For $A \in \mathcal{A}_2 \cup \mathcal{A}_3$, similarly,

(6)

$$|T^{*n_0}\mu(A) - T^{*n_0}\nu(A)|$$

$$\leq \int_{\Gamma^{n_0}} |\mu((\gamma_{n_0}\cdots\gamma_1)^{-1}A) - \nu((\gamma_{n_0}\cdots\gamma_1)^{-1}A)|P^{n_0}(d\gamma_1\cdots d\gamma_{n_0})|$$

$$\leq (1 - P^{n_0}(\Gamma_2))d(\mu,\nu).$$

Combining (5), (6) one gets

(7)
$$d(T^{*n_0}\mu, T^{*n_0}\nu) \le \max\{1 - P^{n_0}(\Gamma_1), 1 - P^{n_0}(\Gamma_2)\} \cdot d(\mu, \nu).$$

(4) and (7) together imply

$$d(T^{*n}\mu, T^{*n}\nu) \le \delta^{[n/n_0]}d(\mu, \nu), \ \forall r = 1, 2, \cdots$$

where $[n/n_0]$ is the integer part of n/n_0 , and

$$\delta = \max\{1 - P^{n_0}(\Gamma_1), 1 - P^{n_1}(\Gamma_2)\}.$$

Asymptotics of a class of iterated random maps

References

- 1. P. Billingsley, Convergence of Probability Measure:, Wiley, New York, (1968).
- 2. P. Billingsley, Probability and Measure, Wiley, New York, (1979).
- 3. R. N. Bhattacharya, and O. Lee, Asymptotics of a class of Markov processes which are not in general irreducible. Ann. Prob., 16,(1988) 1333-1347.
- 4. K. L. Chung, Lectures from Markov processes to Brownian motion, Springer-Verlag, New York, (1982).
- 5. Chanho Lee, Iterated Random Maps and Nonlinear Autoregressive Time Series Models, Ph.D. Dissertation, Indiana Univ., (1991).
- K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic, New York, (1967).

DEPARTMENT OF MATHEMATICS, HAN NAM UNIVERSITY, TAEJON 300-791, KOREA