A Modeling Tool for
X-Window Application
Software Development

This paper presents a modeling tool, so-
called X-ADD (X-window application Analysis
& Design Diagram), which is useful for the
understanding of existing X-window applica-
tion program and the development of new
X-window application software. This X-ADD
tool is available for the X-window applications
maintenance activities such as program
understanding, and program analysis by the
concept of reverse engineering. In addition, it
supports the analysis and design for the new
X-window application system development.
Therefore, by the use of this tool, the visibility
of the existing X-window application programs
can be enhanced and modeling for the design
of new X-window application systems can be
easily made.

I. Introduction
As the needs of "Look and Feel" interface have

increased, the GUI (Graphic User Interface) on
the X-window system [1] with which the end users

ETRI JOURNAL, VoL 15, no 2, 1993. 10.

by Joon Seok Lee
Sang Bum Lee
Dong Hae Chi

can access the computer easily without the knowl-
edge of detailed operations has emerged. Usually
the use of software having GUI provides much
easiness compared to that of non-GUI software,
but the development and maintenance of GUI-
based application software still remains as a trou-
blesome task to the programmer. Moreover, in
spite that many GUI builder tools [1] which are
useful for coding GUI programs have been appeared,
they are not useful for analysis, design, and main-
tenance phases in the software life cycle because
of their lack of supporting power for the under-
standing and analysis of GUI-based applications.

In general, X-window application software.

consists of three major parts; the user interface,
the engine, and the callbacks [2]. While the user
interface part (presentation layer) controls the
appearance of somethings on the screen, the
engine (application layer) has a set of the algo-
rithms which perform applicative computation like
other user-defined functions. Callbacks (dialog
layer) help to communicate between the underly-
ing application and the user interface. Fig. 1 shows

J.S Leeetal

75

76

the general structure of X-window application.
Since underlying modeling concepts differ from
cach other, i.e., the user interface part adopts the
concept of object-oriented and the callback part
follows the event-driven approach, most existing
modeling techniques such as flow charts [3], struc-
ture charts [3] and object modeling diagrams [4] are not
suitable for the modeling of X-window application
software. In addition, many techniques of program
understanding and reverse engineering techniques
{5, 6, 7, 8, 9} are not helpful for the analysis and
understanding of GUI-based applications. Because
these techniques can cover the only part of engine
in X-window application.

User Interface

CallBack

Engine(Algorithm)

Fig. 1. The structure of X-window Application.

In practice, X-window application is pro-
grammed by X toolkits such as X intrinsics and
widget sets [12]. X toolkit makes it simple to con-
struct widgets such as buttons, dialogs, and menus
by providing pre-defined functions. Each user
interface object (or widget) is defined by a set of
variables called resources. Usually a pre-defined
function has a long complicated name and many
parameters. It is not easy to define appropriate
resources exactly since there are too many
resources. In addition, the widgets follow the char-
acteristics of an object in object-oriented
approaches and the event occurred by the action
of widget is similar to the event-driven approach.
Hence, it is not easy to recognize the relation-

J. 5. Lee et al.

ships among the user interface, the callback func-
tion and algorithm from the different points of
view. The understanding of X-window application
program is difficult as a program size becomes
large.

In this paper, a new modeling tool for the use
of understanding and development of GUI-based
applications, so-called X-ADD (X-window appli-
cation Analysis & Design Diagram) tool is intro-
duced. The X-ADD automated tool which imple-
ments the X-ADD modeling technique supports
re-engineering in X-window application software
development from analysis to maintenance. The
quick understanding of the existing X-window
application program can be enhanced by using this
X-ADD tool, i. e., an existing X-window program
can be converted to X-ADD easily by applying
this tool.

The outline of this paper is as follows. In
chapter II, the modeling technique and symbols
defined for this tool are introduced. The examples
applying this X-ADD technique are discussed in
chapter III. The features of X-ADD tool are
described in chapter IV. Finally, the conclusion of
this work is discussed in chapter V.

II. The X-ADD Modeling
Technique

X-window programs like other ordinary appli-
cation programs consist of a set of functions;
some of which are defined to represent widgets or
icons on the window and the others are used to
perform general computing. It is possible that the
whole program can be pictorially represented by a
set of symbols, if each function has a correspond-
ing pre-defined symbol. A set of symbols is a
component of X-ADD. As X-window application

ETRI' JOURNAL, voL 15, No 2, 1993. 10.

software is hierarchically constructed with three
parts in Fig. 1, a set of symbols is hierarchically
related with each other. Here, a set of symbols
and their meanings are introduced in below.

1. Symbol of an invisible X functions

There are pre-defined X functions in X-win-
dow program whose execution does not affect to
display somethings directly on the screen but they
are necessary to build windows. The example
functions include the composite functions in Xt
intrinsics and the so-called container widget func-
tions such as XmCreateForm, XmCreateBullet-
inBoard and XmFrame in Motif/X [10, 11]. Due
to their property of invisibility on the screen, these
functions might be easily ignored and bring the
difficulty to find errors when there are errors. A
symbol similar to a box is defined in Fig. 2 to rep-
resent such an invisible X function. In general, X
functions consist of function variable name, X
function name, and resource pames. There are
three sub parts in the box: The top row denotes a
user-defined function variable, the middle row
contains X function's pre-defined name such as
Xlib functions, X widget functions, and X intrinsic
functions and the bottom row has the resources
such as the size and the position of a window, and
etc.

function variable

X function

Resource name : data

Fig. 2. The symbol of an invisible X function.

2. Symbol of a visible X functions

ETRI JOURNAL, VoL 15, No 2, 1993. 10,

The visible X function means a function which
directly displays something on the screen. In
Motif/X, most widget functions such as XmCre-
atePushButton, XmCreatePulldownMenu, and
XmCreatePromptDialog are included in this cat-
egory of functions [10, 11]. A symbol represent-
ing a visible X function is defined in Fig. 3. There
is no big difference with the symbol of an invisible
X function except vertical boundary lines. The
contained information is also the same as those of
the symbol in Fig. 2.

function variable

X function

Resource name : data

Fig. 3. The symbol of a visible X function.

3. Symbols of callback functions

A callback function is a part of the X-window
application program which enables to communi-
cate between the user interface and the computa-
tional part. Usually it is regarded as the most
hardest part to manage the X-window program.
Callbacks are usually written by attaching them to
a specific widget event. The connection function,
for example XtAddCallback [10, 11] enables to
connect a visible X function and a callback func-
tion through parameters. A circle-like symbol in
Fig. 4 is defined to represent the callback function.
To make it simple, only the name of the callback
function is specified in a circle. A double circle-
like symbol is defined to represent a terminated
callback function, which is a pre-defined function,
for example XtUnmanageChild [10, 11] in
Motif/X, and makes the specified widget disap-
peared from the screen.

J. S Leeetal

78

terminated
callback

function
name

callback
Sunction

name

Fig. 4. The symbols of callback function.

4. Symbols of general function

A general function is an ordinary user-defined
function which performs computing. We modify
an ellipsoid to represent the symbol of this catego-
ry function in Fig. 5. Only the name of the func-
tion is specified in the center of the ellipsoid like a
symbol of the callback function in Fig. 4. The
double lined ellipsoid represents a terminated gen-
eral function which makes the specified widget
removed from the window.

terminated general
function name

general function
name

Fig. 5. The symbols of general function.

5. Symbol of a call relationship

An arrow with a parameter on the top is
defined to specify the parameter passing in Fig. 6,
It represents the relationship between a visible X
function and a callback function, or between a
callback function and a general function with
client data. If the left hand side of an arrow is
connected to the visible X function, the right hand
side should be directed to a callback function. In
case the left hand side of an arrow is connected to

J.S. Leeetal

the callback function, the right hand side needs to
be directed to a general function. If there is no
client data on an arrow, it represents the connec-
tions between an invisible X function and a visible
X function.

client_data name

T
-

Fig. 6. The symbol of a call relationship.

6. Symbol of an assembly relationship

If one window contains a set of widgets, the
relation of assembly of widgets is specified with a
symbol in Fig. 7, which looks like a diamond.
For instance, a container widget such as the bul-
letin board widget can contains several primitive
widgets such as pushbutton, scalebutton, etc.

Fig. 7. The symbol of an assembly relationship.

7. Symbol of an either-or relationship

As discussed early, the callback function sets
up the connection routine for an X-function and a
non X-function. In that case, there must be several
computing functions connected to the callback
function through client data and only one function
is selected at a given event. The symbol in Fig. 8
is defined to represent the either-or relationship.

Fig. 8. The symbol of an either-or relationship.

ETRI JOURNAL, voL 15, No 2, 1993. 10.

ITII. Examples

In this chapter, we introduce two simple exam-
ples to model, and analyze the X-window applica-
tion software by using of X-ADD technique.
Through these examples, the relations between X-
ADD symbols and the meanings of symbols can
be clear.

The first example is shown for the understand-
ing of the existing X-window application program.
An application program in Appendix referred from
[10] is converted to a diagram in Fig. 9 by X-
ADD modeling technique. The description of this
example is as follows :

- There is a push button named ' Button 'in a

window.

- When the button is pushed, an event is

occurred to created the message dialog that

has two buttons named ' OK ' and ' CAN-
button
toplevel
4 —— XmCreatePush- OK
XtApplnitiatize Button .~
XmNlabelString:
button

CEL "

- If the button ' OK ' is pushed, a message
appears on the screen. If the button
'CANCEL ' is pushed,
disappears.

the message dialog

In Fig. 9, the toplevel widget (invisible X func-
tion) contains a button-widget (visible X function)
which is connected to buttonCB (callback func-
tion) whose client data is ' OK'. Consequently,
buttonCB creates a message dialog widget (visible
X function) which calls dialogCB (callback fune-
tion). If the client data is ' OK ', the function A
(general function) executes and the message dia-
log disappears. If the client data is ' CANCEL ',
the message dialog disappears immediately. NULL
means that there is no function. The symbol (@) in
Fig. 9 is defined to represent the connectivity of
separated diagrams.

Fig. 9. The X-ADD of the first example.

ETRI JOURNAL, voL 15, NO 2, 1993, 10,

dialog
. XmCreateMes- | OK
. dialogCB sageDialog - @
Cancel
XmNmessage
String : Message

Cancel

J. 8. Lee et al.

79

The second example is to draw the X-ADD for
the design of an X-window system. The system
requirements of the second example are described

as follows:

- A bulletin board contains several widgets
such as one label widget, three button wid-

gets, one text widget.

- Each button is connected to the specific

bulletin_widger

XmCreateBulletin
BoardDialog

XmNheight : 200
XmNwidth : 400

label

XmCreateLabel

_<\

80 J. 5. Lee et al.

XmNx: 20
XmNy : 20
XmNlabelString

edit

XmCreateText

XmNx: 150
XmNy : 20

do-button

XmCreatePushButton

XmNx: 70
XmNy : 80
XmNlabelString: save

cancel-button

XmCreatePushButton

XmNx: 140
XmNy : 80
XmNlabelString: cancel

J

function through a callback function, doCB.

- While the do-button widget is chosen, the

function do executes, the function help

begins to execute when the help-button

widget is selected. Otherwise, the bulletin

board disappears from the window, i.e_, there

is no corresponding function (NULL) when

the cancel-button widget is pushed.

- doCB

CANCEL

help-button

HELP

XmCreatePushButton

XmNx: 280
XmNy : 80
XmNlabelString: help

Fig. 10. The X-ADD of the second example.

OK

> help
HELP

ETRI JOURNAL, VoL 15, No 2, 1993. 10.

The diagram in Fig. 10 represents this situa-
tion. In this figure, bulletin-widger (invisible X
function) contains one label widget, one text wid-
get and three push button widgets. All of these
button widgets call the doCB (callback function),
but each of them has different client data. If the
client data is ' OK ', do (general function) exe-
cutes. If the client data ' CANCEL ' is chosen, the
bulletin-widget board disappears immediately
without any execution. If ' HELP ' is selected,
help (general function) executes.

IV. The Features of X-ADD Tool

The various features of X-ADD CASE tool
that implements the modeling and analyzing of the
X-window application program are introduced in
this chapter. The features of X-ADD tool are sum-
marized as follows:

- This tool has a graphical editor which han-
dles the creation and revision of various
symbols (X function, callback function, etc)
with ease.

- Callback functions and general functions are

View

Build/Create Check Help

:I File Edit
‘ []
Invisible Visible
Callback Terminated
Callback
General Terminated
Function General
Function
— O
Call Assembly
Either-or Connector

Builld X-ADD
Crtate Source

Y

Build X-ADD

Model Name [~
Ll S—

Build X-ADD

Model Name [
I—

Source file

Fig. 11. The windows of X-ADD tool.

ETRI JOURNAL, voL 15, No 2, 1993. 10.

J. 8. Leeetal

81

82

Source
builder \
y
Source /
Analyzer

@ T (Disgum
builder

Diagram
/ Drawer

Fig. 12. X-ADD tool system.

registered in and retrieved from the pre-
defined library.

- The drawn X-ADD can be converted to codes
of a program description language easily.

- The existing X-window program can be con-
verted to an X-ADD automatically.

- This tool enables to check completeness and
correctness of the development system
using defined rules.

This tool includes various sub-internal tools,
such as graphical editor, source builder, source
analyzer, diagram builder, and so on. While Fig.
11 represents the part of user interface windows in
X-ADD tool. Fig. 12 describes the X-ADD tool
system and describes the relation among the inter-
nal tools. The input diagram of the diagram draw-
er is parsed and stored in the repository, and this
parsed information of diagram is created to an X-
window based program by the source builder.
Also, the information of existing X-window appli-
cation program is stored into the repository in the
form of widgets (libraries) and stored information

J. 8. Lee et al.

is shown in user interface window by the diagram
builder.

V. Conclusions

In general, there is a lack of modeling tech-
nique in the understanding and development of X-
window application software. We have presented a
modeling tool (technique) which helps the user to
understand the existing X-window application
programs, analyze and design the new X-window
application -software. Primarily, this tool supports
for the general forward engineering of new X-win-
dow application software development from the
analysis to the design, and maintenance. In addi-
tion, the use of this tool in the reverse engineering
enhances the visibility of X-window application
i.e,, this X-ADD modeling tool helps to under-
stand the existing an X-window application pro-
gram by converting it to the diagram. The major
benefit of this diagram technique is that it is very
simple, and easy to apply to the real systems. We

ETRI JOURNAL, VoL 15, No 2, 1993, 10.

are now working on the development of X-ADD
CASE (Computer-Aided Software Engineering)
tool which helps to draw X-ADD diagram easi-
ly, and convert X-window program to X-ADD

[Appendix]
/¥ message.c */

#include <Xm/Xm. h>

#include «<Xm/PushB.h>

#include <Xm/MessageB.h>

#define OK 1

#define CANCEL 2

XtAppContext context;

XmStringCharSet char_set = XmSTRING _

DEFAULT_CHARSET,;

Widget toplevel, button, dialog;

void dialogCB(w, client_data, call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

{
switch(client_data)
{
case OK:
printf("OK selected\n");
break;
case CANCEL:
break;
}
XtUnmanageChild(w);
}
void buttonCB(w, client_data, call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct*call_data;
{
XtmanageChild(dialog);
}

ETRI JOURNAL, voL 15, no 2, 1993, 10.

diagram automatically, and vice versa. Moreover,
this tool has the facility to check the completeness
and correctness of an X-ADD diagram with
defined rules.

void main(arge, argv)
int argc;
char *argv[];

Arg al[10];
int ac;
toplevel= XtApplnitialize(&context, "",
NULL,0,&argc,argv, NULL, NULL,0);
ac=0;
XtSetArg(al[ac], XmNmessageString,
XmStringCreateLtoR(" Mess-
age ", char_set));ac++;
dialog = XmCreateMessageDialog(top-
level,"dialog",al,ac);
XtAddCallback(dialog, XmNokCallback,
dialogCB, OK);
XtAddCallback(dialog, XmNcancelCall
back, dialogCB, CANCEL);
XtUnmanageChild(XmMessageBoxGet-
Child(dialog, XmDIALOG_HELP_
BUTTON);
ac=0;
XtSetArg(al[ac], XmNlabelString,
XmStringCreate ("Button ",char
_set)); ac++;
button = XmCreatePushButton(toplevel,
"button",al,ac);
XtManageChild(button);
XtAddCallback(button, XmNactivateCa-
liback, buttonCB, OK);
XtRealize Widget(toplevel);
XtAppMainLoop(context);

J. 8. Lee et al.

83

84

R
(1]
(2]
(3]
[4]
(5]

(6]

(7]

eferences

James C. Armstrong Jr., " Six GUI builders
face off ", SunWorld, 1992. 12.

James C. Armstrong Jr., * ABCs of Program-
ming on X", SunWorld, 1992.12.

Richard E. Fairley, Software Engineering
Concepts, McGraw-Hill, 1985.

James Rumbaugh et al, Object-Oriented
Modeling and Design , Prentice-Hall, 1991.
Y. F. Chen, M. Y. Nishimoto, "The C Infor-
mation Abstraction System," IEEE Transac-
tions on Software Engineering, Vol. 16, No.
3, 1990.

L. Clevelands, "A Program Understanding
Support Environment," IBM Systems Jour-
nal, Vol. 28, No. 2, 1989.

T. A. Corbi, "Program Understanding Chal-
lenge for the 1990s," IBM Systems Journal,
Vol. 28, No. 2, 1989.

Joon Seok Lee
received the B.S. degree
in industrial engineering
from HanYang Universi-
ty, in 1985, the M.S.
degree in industrial engi-
neering from Korea
Advanced Institute of
Science and Technolo-
gy(KAIST), in 1990. He
is a researcher in the System Engineering Section at
ETRI, where his research interests are in the config-
uration management, the modeling of software sys-
tem, and the system development methodology.

Sang Bum Lee
received the B.S. degree
in mechanical engineer-
ing form HanYang Uni-
versity, in 1983, and the
M.S. and the Ph.D.
degrees in computer sci-
ence from Louisiana
State University, in 1989,

J. 8. Lee et al.

(8]

(9]

[10]
[11]

[12]

[13]

A_ R. Henver, R. C. Linger, "A Method for
Data Reengineering in Structured Programs,”
Proc. 22nd Annual Hawaii Int'l Conference
of Systems Science, 1989.

D. J. Robson, H. H. Bennett, B. J. Cornelius,
and M. Munyo, "An Approaches to Program
Comprehension," Journal of Systems and
Software, Vol, 14, Feb. 1991.

Marshal Brain, Motif Programming. Digital
Press, 1992.

Donald L. McMinds, Mastering OSF/Motif
Widgers, HP Press, 1992,

Douglas A. Young, The X Window System
Programming and Applications With Xt
OSF/Motif Edition, Prentice-Hall, 1990.

T. J. Biggerstaff, "Design recovery for main-
tenance and Reuse," IEEE Computer, July
1989.

1992, He is a senior researcher in the System Engi-
neering Section at ETRI. His research areas are
software engincering, knowledge-base system, and
system modeling.

Dong Hae Chi
received the B.S. degree
in chernical engineering
from KyungHee Uni-
versity, in 1982, and the
M.S. and the Ph.D.
degrees in industrial
engineering from Iowa
State University, in
1985 and 1989, respec-

tively. Dr. Chi is currently a head of the System
Engineering Section at ETRI and an Associate Pro-
fessor of Computer Engineering at Chungnam
National University. His research interests include
software reliability, object-oriented development
methodology, and programming environment.

ETRI JOURNAL, voL 15, No 2, 1993. 10.

