Equivariance, Shrinkage,
and Intransitivity for
Pitman Domination

L T

Pitman-Intransitive triples of estimators are
constructed, based on prior work on
equivariant estimators and prior work on
shrinkage.

1. Introduction

According to Pitman [1], an estimator X is
closer than an estimator Y to a scalar parameter 6
(or, in the terminology used below, X Pitman-
dominates Y) if

Pry ((X-0<|Y-0)) > 1/2 , V8.

This criterion is now called the Pitman Closeness
Criterion (PCC). It is generalized ( see Rao et al.
[2] and Sen et al. [3] ) with respect to the loss
function L, +) as follows : Let X and Y, with joint
density depending on a parameter vector 8 € e,
be estimators of 6. X is closer than Y to 6 with

ETRI JOURNAL, voL 15, No 2, 1993. 10,

by Seongmo Yoo

respect to the loss function L(s, +) (or, in the nota-
tion used below, X 1> Y ) if

Pro(L(X,0) <L(Y,0)) >1/2,¥0€0. (1)

This criterion is now called the Generalized Pit-
man Closeness Criterion(GPCC).

Pitman suggested that a median-unbiased esti-
mator depending on a minimal sufficient statistic
is well suited to PCC in the sense that it is Pitman-
closest possible, and gave the "comparison theo-
rem" for identifying classes of estimators Pitman-
dominated by a minimal sufficient median-unbi-
ased estimator. Ghosh and Sen [4], interpreting
Pitman's comparison theorem in terms of Basu's
theorem [5], showed that a median-unbiased esti-
mator dominates every other estimator within the
class of equivariant estimators. Nayak [6] obtained
the best equivariant estimators in the sense of
GPCC by using decision theoretic approaches.
Kubokawa [7] showed that an estimator is medi-

S. Yoo

27



28

an-unbiased if and only if it is the best equivariant
estimator in the Pitman sense. These investiga-
tions are in a sense supportive of Pitman's idea.

Following a different line of research based on
certain shrinkage constructions, David and Salem
[8] considered estimating the median of asymmet-
ric density supported by the real line. They exhib-
ited a certain class of continuous increasing func-
tions of such an observation, Pitman-dominating
the observation itself. Robert, Hwang, and Straw-
derman [9] studied shrinkage constructions for Pit-
man-dominating an estimator of a location param-
eter of a density from location family. Yoo and
David [10] studied shrinkage constructions for
dominating an estimator of an arbitrary parameter
of a not-necessarily symmetric density under PCC.
Yoo and David [11] further extended these results.
This direction of research is less supportive of Pit-
man's idea.

Pitman [1] noted that the definition of PCC is
of itself intransitive: Although X Pitman-domi-
nates Y, and Y Pitman-dominates Z, yet Z Pitman-
dominates X. After that Blyth [12] found examples
for discrete cases where intransitivity is manifest
in the case of a single unknown parameter. David
and Salem (8] constructed intransitive triples of
estimators of a Laplace location parameter, each
member of the triple dominating a single observa-
tion. Robert, Hwang, and Strawderman [9] con-
structed intransitive triples of estimators of a scale
parameter of a uniform density.

The present paper is devoted to constructing a
class of Pitman-intransitive triples X, M (X), T (X)
with X &M (X), T(X)> X, and T (X) # M (X) for
the location parameter case and scale parameter
case. The discussion is in terms of GPCC, involv-
ing loss functions of the form L (x, 0) = h(x-0),
where A(y) = r(y) on [0, +) and s(-y) on (-, 0],
with r(y) and s(y) continuous increasing on [0,
+e) and #(0) = s(0) = 0.

3. Yoo

II. Preliminary Result

Let a, and a, satisfy - = g; < g, < +, and let
I'be the interval (a; , a;). LetX, with density f(x
;8) supported by I, have median 6. Further, for
given ¢ € I, let A(-) be any continuous increas-
ing function (which clearly always exists, as in
Yoo and David [10]) satisfying

f:(er)"(x;B)dxsl/L a, < sc (2a)
f (?(x;ﬂ)dx 512, cs8 <a, (2b)
M) < 8, a<B<c, (2¢)
Mo)=c , (2d)

MB) > B, c<B<a,. ()

From Yoo and David [10] we have the following
lemma.

Lemma 1. Let X, median-unbiased for 6,.6 € I,
have density f (x :8) with support I for all 6.
Then, for ¢ €(a, , a,), any estimator T (X) of §
with T (+) continuous and

x<TX) <N , oy <x<c, (3a)
T(c)=c , (3b)
AMx) < T(x) < x , c<x < ay , (3c¢)

Pitman-dominates the estimator X with respect to
any loss function of type L ; in other words, for 6
€ (al s Ao ) s

Prg (L(T(X), ) < L(X,0)) > 1/2 . 4
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0. Triples of Intransitive
Estimators for Location
Parameters

Lemma 1 with ¢ = 0, @; = - and a4, = +, and
the results of Ghosh and Sen [4], Nayak [6], and
Kubokawa [7], lead to the following theorem,
whose geometric basis is illustrated by Figure 1.
Theorem 1. Let X, median-unbiased for a loca-
tion parameter § 0 € [ = (- , +x), have density
f (x ;8) with support I for all 0. Let, for any fixed
0, € (0 ,+x), M(X) be any estimator of 8 of the
form M(X) = X+b , b < 0, satisfying, for 6, s x =
MB,),

max( x+A* (8,)-0, , At (x), x+0,-M(0,))
<Mx) < x . o)

Ler, for givenx, €(0, 8, ), T(X) be any estimator
of O which is continuous and

x<Tx) < A () , x<0 (6a)
=0, (6b)

max (A (x) ,M(x) ) <T(x) < x ,

0<x<x, (6¢)
T(x,) = M(x,) , (6d)

A < TR) < M(x)
X, < x < M'(0,) (6¢)
Tx)=M(x) , x= M'(6,) ()]

M(x) < T(x) <x,M'(8,) <x=N0,) (62

max (A (x) ,M(x)) <T(x)<x ,
x > M6, . (6h)
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Then X > M(X), T(X)t> X, and T(X) ¥ M(X); in
other words,

Pro (L(X, 8) < LM(X),0) ) > 1/2
veer (7a)

Pry (L(T(X),0) < L(X, 0) )> 172,
veer, (7b)

Pro( L(M(X), 0) < L(T(X),8)) > 1/2 ,
0=0, . (7¢)

Proof. It is easily noted that M(X) is an equiv-
ariant estimator. Essentially as in Ghosh and Sen
[4], Nayak [6], and Kubokawa [7], X & M(X). Also
it is true that T(X) > X since T(X) satisfying (6)

also satisfies condition (3) in Lemma 1.

It remains to show that (7¢) holds. In view of (5),
it is observed that

max (}"1 (60) » 290 N )"(eo) ) < M(eo) < 6o (8)
and

max ()\.(90) + A7 (eo) - 90 ’ eo )
<M(MB,)) < AO,) - ©)

(8) implies

0, <« M'(8,) (10)
and (9) implies

M7 (8,) < MBo) - (1)
Hence, in view of (10) and (11), it is true that

0, < M*(8,) < A8,) - (12)
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For x, < x < M (8,), itis clear that M(x) <«
8,, hence, in view of (6¢), we have

LM(x),0) < LT ,0,) .  (13)

For M'(8,) <x = AB,), it is clear that 6, <
M(x), hence, in view of (6g), we have

LM(x),8,) < L(T(x),6,) . (14)

For x > MB,), it is clear that A (x) > 8, and,
in view of (11), it is true that

M(x) > M(MB,)) > M(M" (6, ))=6, ,
hence,
min(M®) , A* (x)) >0, . (15
Thus, in view of (6h) and (15), we have
LM(x),8,) < L(T(x),8,) . (16)

Therefore, in view of (6£), (13), (14), and (16),

implies
LM, 0,) = L(T(), 6, )
with equality holding only when x = M™ (8, ).
Finally, we have, for 8 = 6, € (0, +),
Pre (L(M(X), 6) < L(T(X), 6))
= Pry(X > x,)

> Pry(X>0) =172 .

Remark 1. For any fixed 6, € (-, 0), a similar
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argument holds by defining M(X) to be any esti-
mator of 8 of the form M(X) =X + b, b > 0, satis-
fying, for A(6,) = x = 6, ,

x < M(x) < min(x+A*'(6,)-8, ,
A(x), x+08,-M6,)) .

Remark 2. In keeping with the fact that shrink-
age need not be constructed with ¢ = 0, the theo-
rem also applies with arbitrary ¢ .

Example 1. Let X be a single observation from

the density
F(x;0)=2" er | x& (-2, +2) ,

where 0 is real valued unknown location parame-
ter. It is noted that X is a median-unbiased estima-
tor of 8. Without loss of generality, we assume 6
> 0. It is easy to see that A* (0)=0 - In(1 - e*)
where A* (6) satisfies

f‘(e}(x 0)dx = 172, 0<6 < +.

It is easy to see that A* (x) is convex and has a
unique minimum value 2In2 at x = In2. Now take
A(0) satisfying

A0) =6+ In(1-¢") , B <-In2
M0)=28, -In2 <6 <In2

AMB)=0-1n(1-e% , 6 > In2.

Then M(0) satisfies (2). Now take M(X) and T(X)
satisfying (5) and (6), respectively. Then, in view
of Theorem 1, X > M(X) , T(X) > X, and T(X)}
MX).

Example 2. LetY,, ««. Y, beiid random

variables having the normal density with unknown
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mean 6 and unit variance. Let X be the sample
mean(i.e., X = Y= EY /n). It is noted that X is
a median-unbiased’ estlmator of 6. In view of
Lemma 1, we can construct a function \? () satis-
fying (2) in the following way:

1 (-
f(‘*)«/_ xp(- )dx 1/2,
—mﬁﬁsc,
f\“” exp(- & ))dx 1/2,
csﬁ<+oo,
MB) <8, —w<B<c,
Mce)=c,

MO >0, c<B<+o.

Now take M(X), T(X) satisfying (5) and (6),

respectively. Then, in view of Theorem 1, X b
MX), T(X) > X , and T(X) pM(X). An example
of triples of intransitive estimators of 8 with ¢ = 0
is displayed in Figure 1 by applying Theorem 1.

IV. Triples of Intransitive Esti-
mators for Scale Parameters

Lemma 1 with ¢ = 1, a; = 0 and a, = +, and
the results of Ghosh and Sen [4], Nayak [6], and
Kubokawa [7], lead to the following theorem,
whose geometric basis is illustrated by Figure 2.

Theorem 2.  Let X, median-unbiased for a scale
parameter g, o € I = (0, +»), have density f (x
;0) with support I for all . Let, for any fixed o, &€
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Fig. 1. Triples of intransitive estimators of 8 for N (6, 1) withc =0
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(0, +), M(X) be any estimator of o of the form
MX)=bX,0<b <1, satisfying, for o, =x =
Moo

max (A (G,) X /T, , N (%),

O, x/ Moy)) <M(x)<x . an
Let, for given x, € (¢, 0,), T(x) be any estimator
of o which is continuous and

x<TE) <A (x) , O<x<c (18a)
Te)y=c, (18b)
max( A (x), M(x) ) < T(x) <x ,
Cx <X, (18¢)
T(x,) =%y » (18d)
AN (x) < T(x) < M(x) ,
x, < x< M'(qa,) (18e)
T(x) =M(x) , x=M"(g,) (18
M(x) < Txy<x

M* (o) < x5 M0y) (18¢)

max( A (x), M(x)) < T(x)<x ,
x>Mo,) . (18h)

Then X > M(X), T(X)1> X, and T(X) ¥ M(X); in
other words,

Pr, (L(X, 0) < LM(X),0) )»1/2 , YoE I,
Pr, (L(I(X),0)<L(X,0) )»1/2 , Voe I,
Pr, (LM(X), 0) < L(T(X),0))=1/2 , =0, .

It is also easily noted that M(X) is an equivari-
ant estimator and the proof is omitted since it

essentially follows the proof of Theorem 1.

Remark 3. For any fixed o, € (0, ¢), a similar
argument holds by defining M(X) to be any esti-
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mator of o of the form M(X) = bX, b > 1, satisfy-
ing, forMao,)=x=0, ,

x<M@x)<min( A' (g,) x /o, ,
A), 0y X/ Mag)) -

Example 3.  LetY; ,--- ,Y, beijid random
variables having the normal density with unknown
mean 6 and unknown variance 0°. Let $* be the
mean-unbiased estimator of o? (e, = Y (y;
¥ ¥ /(n-1)). Itis observed that =1

Pr (0 < $* < 0%)

. |
~Pr,0< "D chonys1/2
g

Thus, there exist k,, , 0 <k, <1, such that
Pr,(0<$ /k, <0 )=1/2.

Therefore, §* / k, =X is a median-unbiased esti-
mator of ¢® Now it is clear that, for any ¢ > 0,
there exist a continuous increasing function AM(c?)
such that

Pro(c<X<No))=1/2 , Mo)>c* >c,
Moy=c,
Pro (Mo <X=<c)=1/2 , Mo9)<0* <c .

Now take M(X), I(X) satisfying (17) and (18),
respectively. Then, in view of Theorem 2, X >
MX), T(X) - X, and T(X) » M(X). An example
of triples of intransitive estimators of 0> with c =1
is displayed in Figure 2 by applying Theorem 2.
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