MANIFOLDS WITH KAEHLER-BOCHNER METRIC

U-Hang Ki and Byung Hak Kim

Dedicated to Professor Younki Chae on his 60th birthday

It is known that if a manifold with Kaehler-Bochner metric has constant scalar curvature, then M is either a space of constant holomorphic sectional curvature or a locally product space of two spaces of constant holomorphic sectional curvature c and $-c(\geq 0)$. This work is to prove that the scalar curvature is constant if and only if the trace of S^{m} is constant in a manifold with parallel Bochner curvature tensor, where S is the Ricci operator.

This result is applied to the manifolds with Kaehler-Bochner metric and we get generalized theorems of known facts.

1. Introduction

Let M be a Kaehlerian manifold of real dimension n with almost complex structure J and Kaehler metric g.

Bochner [1] introduced the so called Bochner curvature tensor B on M defined by

$$
\begin{align*}
B(X, Y)= & R(X, Y)-\frac{1}{n+4}\{S X \wedge Y+X \wedge S Y+S J X \wedge J Y \\
& +J X \wedge S J Y-2 g(J X, S Y) J-2 g(J X, Y) S J\} \tag{1.1}\\
& +\frac{r}{(n+2)(n+4)}\{X \wedge Y+J X \wedge J Y-2 g(J X, Y) J\}
\end{align*}
$$

Received August 26, 1991.
Supported by TGRC-KOSEF.
for any vector fields X and Y, where R, S and r are the Riemannian curvature tensor, the Ricci operator which is a symmetric $(1,1)$ tensor and the scalar curvature of M respectively. $X \wedge Y$ denotes the endomorphism

$$
X \wedge Y: Z \rightarrow g(Y, Z) X-g(X, Z) Y
$$

We say that g is a Kaehler-Bochner metric if B vanishes on the Kaehlerian manifold. Matsumoto and Tanno [3] proved .
Theorem A. Let M be a manifold with Kaehler-Bochner metric. If the scalar curvature of M is constant, then M is either a space of constant holomorphic sectional curvature or a locally product space of two spaces of constant holomorphic sectional curvature c and $-c(\geq 0)$.

The purpose of this paper is to prove that the scalar curvature is constant if and only if the trace of S^{m} is constant for an integer $m>1$ in a manifold with parallel Bochner curvature tensor, henceforth it holds in a manifold with Kaehler-Bochner metric. By use of this result, we have the following generalization of Theorem A.

Theorem. Let M be a manifold with Kaehler-Bochner metric and the trace of S^{m} is constant for a positive integer m. Then M is a space of constant holomorphic sectional curvature or a locally product space of two spaces of constant holomorphic sectional curvature c and $-c(\geq 0)$.

2. Proof of the main theorem

In a Kaehlerian manifold with parallel Bochner curvature tensor, we get [3]

$$
\begin{align*}
\left(\nabla_{X} \bar{S}\right)(Y, Z)= & \frac{1}{2(n+2)}\left\{g(X, Y) r_{Z}+g(X, Z) r_{Y}-\bar{J}(X, Y) r_{J Z}\right. \\
& \left.-\bar{J}(X, Z) r_{J Y}+2 g(Y, Z) r_{X}\right\} \tag{2.1}
\end{align*}
$$

where $\bar{S}(X, Y)=g(S X, Y), \bar{J}(X, Y)=g(J X, Y)$ and $r_{X}=\nabla_{X} r$. From (2.1), we can see that

$$
\begin{equation*}
(n+2)\left(\nabla_{X} \bar{S}\right)(U, U)=2 r_{X} g(U, U) \tag{2.2}
\end{equation*}
$$

where U is a vector field given by $g(U, X)=r_{X}$. Then we have
Lemma 2.1. If $\bar{S}(X, U)$ vanishes identically for any vector field X on a Kaehlerian manifold with parallel Bochner curvature tensor, then the scalar curvature is constant.

Proof. If we differentiae $S \nabla r=0$ and make use of (2.2), then we get the above result.

We define $S^{(2)}, \alpha(2)$ and $\beta(2)$ by

$$
\begin{align*}
S^{(2)} & =S S \\
\alpha(2) & =\operatorname{trace} S^{(2)} \tag{2.3}\\
\beta(2) & =g\left(S^{(2)} U, U\right)
\end{align*}
$$

Then we can define inductively $S^{(a)}, \alpha(a)$ and $\beta(a)$ for any positive integer a. Obviously $\alpha(1)$ is the scalar curvature of M.

Since the Ricci operator S satisfies

$$
\begin{equation*}
S J=J S \tag{2.4}
\end{equation*}
$$

we see that $S^{(a)} J=J S^{(a)}$. By use of (2.1) and (2.3), we get

$$
\begin{equation*}
2(n+2)\left(\nabla_{X} \bar{S}\right)\left(S^{(a)} U, U\right)=3 \beta(a) r_{X}+\lambda^{2} \bar{S}^{(a)}(X, U) \tag{2.5}
\end{equation*}
$$

where $\bar{S}^{(a)}$ is defined by $\bar{S}^{(a)}(X, Y)=g\left(S^{(a)} X, Y\right)$ and $\lambda^{2}=g(U, U)$. From the equation (2.1), we obtain

$$
\begin{align*}
& 2(n+2)\left(\nabla_{X} \bar{S}\right)\left(S^{(a)} U, S^{(b)} U\right) \tag{2.6}\\
& =\beta(a) \bar{S}^{(b)}(X, U)+\beta(b) \bar{S}^{(a)}(X, U)+2 \beta(a+b) r_{X}
\end{align*}
$$

On the other hand, (2.1), (2.3) and (2.4) imply

$$
\begin{equation*}
(n+2)\left(\nabla_{X} \bar{S}\right)\left(Y, S^{(a)} Y\right)=2 \bar{S}^{(a)}(X, U)+\alpha(a) r_{X} \tag{2.7}
\end{equation*}
$$

By the definitions of $\alpha(a)$ and $\bar{S}^{(a)}(X, Y)$, we can see that

$$
\begin{equation*}
\alpha(a+1)=\operatorname{trace}\left[S^{(a)} S\right] \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \bar{S}^{(a)}\right)(Y, S Y)=a\left(\nabla_{X} \bar{S}\right)\left(Y, S^{(a)} Y\right) \tag{2.9}
\end{equation*}
$$

Therefore, by use (2.7), (2.8) and (2.9), we get

$$
\begin{equation*}
(n+2)\left(\nabla_{X} \alpha(a+1)=(a+1)\left\{2 \bar{S}^{(a)}(X, U)+\alpha(a) r_{X}\right\}\right. \tag{2.10}
\end{equation*}
$$

and that if the scalar curvature r is constant, then $\alpha(m)$ is constant for all integer $m>1$.

Conversely, if we assume that $\alpha(m+1)$ is constant for $m>1$, then we get

$$
\begin{equation*}
2 S^{(m)} \nabla r+\alpha(m) \nabla r=0 \tag{2.11}
\end{equation*}
$$

and that

$$
\begin{equation*}
2 \bar{S}^{(m)}(U, U)+\alpha(m) \lambda^{2}=0 \tag{2.12}
\end{equation*}
$$

For the case where m is even, since $\bar{S}^{(m)}(U, U) \geq 0$ and $\alpha(m) \geq 0$, we see that $\alpha(m) \lambda^{2}=0$, that is, $\alpha(m)=0$ or r is constant. Therefore, it is sufficient to show that r is constant when $\alpha(m)$ is constant for m is even. If we put $m=2 a+2$, then we obtain

$$
\begin{equation*}
2 \bar{S}^{(2 a+1)}(X, U)+\alpha(2 a+2) r_{X}=0 \tag{2.13}
\end{equation*}
$$

by virtue of (2.10). Differentiating (2.13) covariantly and taking account of (2.13), we obtain

$$
2\left(\nabla_{X} \bar{S}^{(2 a+1)}\right)(U, U)+\lambda^{2} \nabla_{X} \alpha(2 a+1)=0
$$

which and (2.10) imply
$\left(2.14 \mathfrak{2}(n+2)\left(\nabla_{X} \bar{S}^{(2 a+1)}\right)(U, U)+(2 a+1) \lambda^{2}\left\{2 S^{(2 a)} r_{X}+\alpha(2 a) r_{X}=0\right.\right.$,
Taking account of the definition of $\bar{S}^{(2 a+1)}(X, Y)$, we can verify that

$$
\begin{aligned}
\left(\nabla_{X} \bar{S}^{(2 a+1)}\right)(U, U)= & 2\left(\nabla_{X} \bar{S}\right)\left(U, S^{(2 a)} U\right)+\left(\nabla_{X} \bar{S}\right)\left(S^{(a)} U, S^{(a)} U\right) \\
& +2\left(\nabla_{X} \bar{S}\right)\left\{\left(S^{(2 a-1)} U, S U\right)+\left(S^{(2 a-2)} U, S^{(2)} U\right)\right. \\
& \left.+\cdots+\left(S^{(a+1)} U, S^{(a-1)} U\right)\right\}
\end{aligned}
$$

By use of (2.5) and (2.6), it turns out to be

$$
\begin{aligned}
(n+2)\left(\nabla_{X} \bar{S}^{(2 a+1)}\right)(U, U)= & \lambda^{2} S^{(2 a)} r_{X}+2(a+1) \beta(2 a) r_{X} \\
& +\beta(a) S^{(a)} r_{X}+\beta(1) S^{(2 a-1)} r_{X}+\beta(2 a-1) S r_{X} \\
& +\cdots+\beta(a-1) S^{(a+1)} r_{X}+\beta(a+1) S^{(a-1)} r_{X}
\end{aligned}
$$

so (2.14) is reduced to

$$
\begin{gather*}
\quad \frac{(2 a+1)}{2} \lambda^{4} \alpha(2 a)+4(a+1) \lambda^{2} \beta(2 a)+\beta(a)^{2} \tag{2.15}\\
2\{\beta(1) \beta(2 a-1)+\beta(2) \beta(2 a-2)+\cdots+\beta(a-1) \beta(a+1)\}=0 .
\end{gather*}
$$

By the definition of $\beta(a)$ and simple calculations, we can see that

$$
\begin{align*}
& \lambda^{2} \beta(2 a)+2 \beta(s) \beta(2 a-s)+\beta(2 s) \beta(2 a-2 s) \tag{2.16}\\
& =\frac{1}{\lambda^{2}} g(T, T)+\alpha(2 a-2 s) g(Q, Q),
\end{align*}
$$

where we have put

$$
T=\lambda^{2} S^{(a)} U+\beta^{(s)} S^{(a-s)} U, \quad Q=S^{(a)} U-\frac{\beta(s)}{\lambda^{2}} U
$$

so the right hand side of (2.16) is non-negative. By use of (2.16), the left hand side of (2.15) is divided into non-negative terms and consequently $\lambda^{2}=0$, that is, the scalar curvature is constant. Thus we have

Theorem 2.2. Let M be a Kaehlerian manifold with parallel Bochner curvature tensor. Then the scalar curvature is constant if and only if $\bar{S}_{(m)}$ is constant on M for a positive integer $m(\neq 2)$.

Moreover, Ki and Kwon [2] proved that $\alpha(2)$ is constant if and only if r is constant for the case of an indefinite manifold with Kaehler-Bochner metric. By the same method of this result, we can easily obtain

Lemma 2.3. $\alpha(2)$ is constant if and only if r is constant on the manifold with Kaehler-Bochner metric.

Considering Theorem 2.2 and Lemma 2.3, we get
Theorem 2.4. The scalar curvaturer is constant if and only if $\alpha(m),(m>$ 1) is constant on the manifold with Kaehler-Bochner metric.

Consequently, combining Theorem A and Theorem 2.4, we obtain the main theorem.

References

[1] S. Bochner, Curvature and Betti numbers II, Ann. of Math., 50(1949), 77-93.
[2] U-H. Ki and J.-H. Kwon, Indefinite Kaehler manifolds with vanishing Bochner curvature tensor, Kyungpook Math. J., 28(1988), 15-22.
[3] M. Matsumoto and S. Tanno, Kaehlerian spaces with parallel or vanishing Bochner curvature tensor, Tensor N.S., 27(1973), 291-294.

Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Korea.

Department of Mathematics, Kyung Hee University, Yongin 449-701, Korea.

