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NOTES ON A CLASS OF WEAKLY
COMMUTATIVE SEMIGROUPS

S. Lajos

A semigroup S is called (3,4)-commutative if the identity (z;z223)(z425
Ter7) = (TaTsrer7) (z1z2z3) holds in S. The author shows that ev-
ery (3,4)-commutative semigroup S is a semilattice of (3,4)-commutative
archimedean [t-archimedean| semigroups; moreover S is a disjoint union of
(3,4)-commutative power joined semigroups. A finitely generated periodic
(3,4)-commutative semigroup is finite. A regular (3,4)-commutative semi-
group is a semilattice of groups. Some results will be obtained concerning
(m, n)-ideals of (3,4)-commutative semigroups.

Let S be a semigroup. We say that S is (3,4)-commutative if the
identity
(1) (212273)(24252677) = (T425T627)(217223)

holds for all elements z,, z,, 23, T4, 526, 27 in S. It is easy to give examples
of non-commutative but (3,4)-commutative semigroups of finite order.
The following is an example of this kind:

01 2 3 4 5
0f{0 0 00O 0 O
1{0 0 0 O O O
2({0 0 0 0 0 O
3(0 0 0 0 01
4(0 0 0 0 1 2
5(0 01 0 3 0.

In this paper we investigate some basic properties of (3,4)-commutative
semigroups. For the terminology the reader is referred to [2] and [10], for
(m,n)-ideals, see the author [5].
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Lemma 1. Every (3,4)-commutative semigroup S is an E — 4 semigroup.
Proof. Let S be a (3,4)-commutative semigroup, a,b € S. Then we have

(ab)* = a(bab)abab = (a’b)ab®ab = (ab?)a®b? = (a*b)bab?®
= (b*a)b’a® = (b*a®)b*a = (b*a?)ab’a = ab*(b*a?)a
= a'b’.

Therefore (ab)* = a'b" for every couple a, b of elements in S, that is, S is

an E — 4 semigroup, indeed.

Lemma 2. Every (3,4)-commutative semigroup S is weakly commutative.
Proof. This follows from Lemma 1, because of

(2) (ad)* = a*b* = b*a?,

and hence (ab)* € bSa for every pair a,b € S.

Theorem 1. Every (3,4)-commutative semigroup S is a semilaltice of
(3,4)-commutative archimedean [t-archimedean] semigroups.

Proof. The statement follows from our Lemma 2 and I1.5.6 Corollary in
Petrich [10]. The bracketed case is an easy consequence of Lemma 2 above
and a criterion due to Galbiati and Veronesi [3].

Theorem 2. Every (3,4)-commutative semigroup S is a disjoint union
of (3,4)-commutative power joined semigroups.

Proof. The statement follows at once from our Lemma 1 and from Theo-
rem 1.7 in [1].

Lemma 3. A semigroup S s (3,4)-commutative if and only if the mult:-
plicative semigroup P(S) of all nonempty subsets of S is (3,4)-commutative.
Proof. In a (3,4)-commutative semigroup S the identity (1) holds. Thus
the (3,4)-commutativity of P(s) follows from (3,4)-commutativity of S
and from the definition of set product. Conversely, (3,4)-commutativity
of P(S) implies that of S because P(s) contains all the one-element subsets

of S.

Theorem 3. Every (3,4)-commutative semigroup S is fized point free
7-permutable.

Proof. In a (3,4)-commutative semigroup S the identity (1) holds, and
the permutation 4567123 is a fixed point free permutation of the set
{1,2,3,4,5,6,7}.
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Corollary 1. A (3,4)-commutative semigroup S is fized point free n-
permutable for every positive integer n > 6.

Proof. The identity (1) implies the identity
(3) T1T3" " T = Tn-3Tn—2Tn-1TnT1%2T3" " * Tn-5Tn—4,

and the cyclic permutation (n —3,n —2,n —1,n,1,2,3,---,n — 5,n — 4)
of the set {1,2,---,n} is fixed point free for every integer n > 6.

Theorem 4. Let S be a finitely generated periodic (3,4)-commutative
semigroup. Then S is a finite semigroup.

Proof. The statement of this theorem is a direct consequence of Theorem
3 and a well known result of Restivo and Reutenauer [11].

Theorem 5. Let S be a intra-regular (3,4)-commutative semigroup. Then
S is a semilattice of groups.
Proof. For every element a of an intra-regular semigroup S there exist
elements z,y in S such that

(4) a = za’y.
Hence it follows that

a = z(za’y)(zd’y)y = (z*a)ay(za’y)y
= ay(za’y)y(aa),

that is, @ € aSa holds for every element @ of §. Thus S is a regular
semigroup.
On the other hand, we have

(5) &% = Epe = ¥€

for every idempotent element e and every element z of S. Therefore the
set E(S) of all idempotent elements of S is contained in the center of S,
and hence S is a semilattice of groups, indeed.

The statement of Theorem 5 remains true with [left, right, quasi-. and
completely] regular instead of “intra-regular”. Hence we have the following
result.

Theorem 6. For a (3,4)-commutative semigroup S the following cond:-
tions are equivalent:
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(a) S is regular.

(b) S is right regular.

(c) S is completely regular.

(d) S is quasi-regular.

(e) S is an inverse semigroup.

(f) S is a semilattice of rectangular groups.
(g) S is a commutative Clifford semigroup.

Theorem 7. If A is a globally idempoten bi-ideal of a (3,4)-commutative
semigroup S, then A is a two-sided ideal of S.

Proof. In this situation we obtain by Lemma 3,
(6) ASA=AS5=5SACA,

whence A is a two-sided ideal of S.

Theorem 8. If A is a complete bi-ideal of a (3,4)-commutative semigroup

S, then A is a two-sided ideal of S.

Proof. By using our Lemma 3, we have
A = ASA=(AS)(AS)ASA = ASA(AS)(AS)
SAS(ASA)A,
whence it follows that A is a two-sided ideal of S.

Theorem 9. Let S be a (3,4)-commutative semigroup and B a bi-ideal
of S having the property B> = B3. Then B? is a two-sided ideal of S.

Proof. By using our Lemma 3, we get

S8 = 88" = B*'SB* € B*SBC B,
and similarly,

B*S = B8 = B°SB" C BSB*C B*,
whence it follows that the power B? is a two-sided ideal of S.

Remark. For instance, the class of all regular semigroups does have the
property B® = B? for every bi-ideal B.

Theorem 10. Let S be a regular semigroup having a (3,4)-commutative
bi-ideal semigroup B(S). Then S is a Clifford semigroup and B(S) is a
commutative band.
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Proof. If S is a regular semigroup, then every bi-ideal B of S is complete,
i.e.

B = BSB.
Hence B = (BSB)(SB)(SB) = (SB)*(BSB) = B(BSB)SBS, whence
it follows that every bi-ideal B of S is a two-sided ideal of S. Thus S is
a regular duo semigroup which is a Clifford semigroup. Therefore, by a
criterion of the author [7], the bi-ideal semigroup B(S) is a commutative

band.

Theorem 11. Let S be a w-regular (3,4)-commutative semigroup. Then
S is a semilattice of nil-extensions of groups.

Proof. This is a consequence of our Lemma 2 and a well known result due
to S. Bogdanovic.

Theorem 12. Suppose that S is a (3,4)-commutative semigroup and A
is an arbitrary (3,4)-ideal of S. Then A is a 7-ideal of S.

Proof. By using the (3,4)-commutativity of the power semigroup P(S) we
obtain

APSA' = SA"=ATS = AS5A? = A(SA*) A = A'SA®
= A°SA=A*(SA)A'C A,

whence A is a T-ideal of S, indeed.

Theorem 13. Suppose that S is a (3,4)-commutative semigroup and A is
a complete (0, k)-ideal of S [resp. (k,0)-ideal of S], where k is an arbitrary
fized positive integer. Then A is a two-sided ideal of S.

Proof. (i) k = 1. In this case we have
A=8A=5A=548°,

whence A is a two-sided ideal of S.

(ii) £ = 2. We have A = SA? = (SA4)*(SA)? = (ASA?)(SAS), and
thus A is a two-sided ideal of S.

(iii) k£ > 3. In this case we have

A = SA* = (SAF)(SAF) = A¥(SA*19),

whence it follows that A is a two-sided ideal of S. The proof is similar in
the bracketed case, too.
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Theorem 14. Suppose that S is a (3,4)-commutative semigroup and A
is a complete (m,n)-ideal of S, where m,n are fired positive integers such
that m+n > 3. Then A is a two-sided ideal of S.

Proof. The proof of this theorem is very similar to that of Theorem 13,
and thus we omit it.

Theorem 15. Suppose that S is a (3,4)-commutative semigroup and A
is a globally idempotent (m,n)-ideal of S, where m,n are arbitrary fized
non-negative integers such that m +n > 1. Then A is a two-sided ideal.

Proof. We have
A"SA" = ASA=AS=5A=A

if m,n are positive integers. Hence A is a two-sided ideal of S. If m = 0,
n > 0 we have

SA™ = SA® = A3SA® = A3(A%S) = SA = AS C A,

whence A is a two-sided ideal of S. The proof is similar if m > 0, n = 0.
Theorem 16. Let S be a (3,4)-commutative semigroup. Then the product
SE(S) is contained in the center of S.

Proof. If z is an arbitrary element of a (3,4)-commutative semigroup S
and e € E(S), then, for every a € S, we have

a(ze) = (ea)ze = (ze)(ea) = (z€)a,

that is, every product ze is contained in the center of S.

Theorem 17. Suppose that S is a (3,4)-commutative semigroup and A is
an arbitrary (m,n)-ideal of S, where m+n > 7. Then A is an (m+n)-ideal
of S.

Proof. Proof is similar to that of Theorem 12 by using (3, 4)-commutativity
of the power semigroup P(S).
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