## NOTES ON A CLASS OF WEAKLY COMMUTATIVE SEMIGROUPS

S. Lajos

A semigroup $S$ is called (3,4)-commutative if the identity $\left(x_{1} x_{2} x_{3}\right)\left(x_{4} x_{5}\right.$ $\left.x_{6} x_{7}\right)=\left(x_{4} x_{5} x_{6} x_{7}\right)\left(x_{1} x_{2} x_{3}\right)$ holds in $S$. The author shows that every $(3,4)$-commutative semigroup $S$ is a semilattice of $(3,4)$-commutative archimedean [ $t$-archimedean] semigroups; moreover $S$ is a disjoint union of $(3,4)$-commutative power joined semigroups. A finitely generated periodic $(3,4)$-commutative semigroup is finite. A regular (3,4)-commutative semigroup is a semilattice of groups. Some results will be obtained concerning $(m, n)$-ideals of $(3,4)$-commutative semigroups.

Let $S$ be a semigroup. We say that $S$ is (3,4)-commutative if the identity

$$
\begin{equation*}
\left(x_{1} x_{2} x_{3}\right)\left(x_{\mathbf{4}} x_{5} x_{6} x_{7}\right)=\left(x_{4} x_{5} x_{6} x_{7}\right)\left(x_{1} x_{2} x_{3}\right) \tag{1}
\end{equation*}
$$

holds for all elements $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} x_{6}, x_{7}$ in $S$. It is easy to give examples of non-commutative but (3,4)-commutative semigroups of finite order. The following is an example of this kind:

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4 | 0 | 0 | 0 | 0 | 1 | 2 |
| 5 | 0 | 0 | 1 | 0 | 3 | 0. |

In this paper we investigate some basic properties of $(3,4)$-commutative semigroups. For the terminology the reader is referred to [2] and [10], for ( $m, n$ )-ideals, see the author [5].

Revised September 10, 1991.

Lemma 1. Every $(3,4)$-commutative semigroup $S$ is an $E-4$ semigroup. Proof. Let $S$ be a (3,4)-commutative semigroup, $a, b \in S$. Then we have

$$
\begin{aligned}
(a b)^{4} & =a(b a b) a b a b=\left(a^{2} b\right) a b^{2} a b=\left(a b^{2}\right) a^{3} b^{2}=\left(a^{3} b\right) b a b^{2} \\
& =\left(b^{2} a\right) b^{2} a^{3}=\left(b^{2} a^{3}\right) b^{2} a=\left(b^{2} a^{2}\right) a b^{2} a=a b^{2}\left(b^{2} a^{2}\right) a \\
& =a^{4} b^{4} .
\end{aligned}
$$

Therefore $(a b)^{4}=a^{4} b^{4}$ for every couple $a, b$ of elements in $S$, that is, $S$ is an $E-4$ semigroup, indeed.

Lemma 2. Every (3,4)-commutative semigroup $S$ is weakly commutative. Proof. This follows from Lemma 1, because of

$$
\begin{equation*}
(a b)^{4}=a^{4} b^{4}=b^{4} a^{4} \tag{2}
\end{equation*}
$$

and hence $(a b)^{4} \in b S a$ for every pair $a, b \in S$.
Theorem 1. Every (3,4)-commutative semigroup $S$ is a semilattice of $(3,4)$-commutative archimedean [t-archimedean] semigroups.
Proof. The statement follows from our Lemma 2 and II.5. 6 Corollary in Petrich [10]. The bracketed case is an easy consequence of Lemma 2 above and a criterion due to Galbiati and Veronesi [3].

Theorem 2. Every (3,4)-commutative semigroup $S$ is a disjoint union of $(3,4)$-commutative power joined semigroups.
Proof. The statement follows at once from our Lemma 1 and from Theorem 1.7 in [1].

Lemma 3. A semigroup $S$ is $(3,4)$-commutative if and only if the multiplicative semigroup $\mathbf{P}(S)$ of all nonempty subsets of $S$ is $(3,4)$-commutative. Proof. In a (3,4)-commutative semigroup $S$ the identity (1) holds. Thus the $(3,4)$-commutativity of $\mathbf{P}(s)$ follows from (3,4)-commutativity of $S$ and from the definition of set product. Conversely, $(3,4)$-commutativity of $\mathbf{P}(S)$ implies that of $S$ because $\mathbf{P}(s)$ contains all the one-element subsets of $S$.

Theorem 3. Every (3,4)-commutative semigroup $S$ is fixed point free 7-permutable.
Proof. In a (3,4)-commutative semigroup $S$ the identity (1) holds, and the permutation 4567123 is a fixed point free permutation of the set $\{1,2,3,4,5,6,7\}$.

Corollary 1. A (3,4)-commutative semigroup $S$ is fixed point free $n$ permutable for every positive integer $n>6$.
Proof. The identity (1) implies the identity

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{n}=x_{n-3} x_{n-2} x_{n-1} x_{n} x_{1} x_{2} x_{3} \cdots x_{n-5} x_{n-4}, \tag{3}
\end{equation*}
$$

and the cyclic permutation ( $n-3, n-2, n-1, n, 1,2,3, \cdots, n-5, n-4$ ) of the set $\{1,2, \cdots, n\}$ is fixed point free for every integer $n>6$.

Theorem 4. Let $S$ be a finitely generated periodic (3,4)-commutative semigroup. Then $S$ is a finite semigroup.
Proof. The statement of this theorem is a direct consequence of Theorem 3 and a well known result of Restivo and Reutenauer [11].
Theorem 5. Let $S$ be a intra-regular (3,4)-commutative semigroup. Then $S$ is a semilattice of groups.
Proof. For every element $a$ of an intra-regular semigroup $S$ there exist elements $x, y$ in $S$ such that

$$
\begin{equation*}
a=x a^{2} y \tag{4}
\end{equation*}
$$

Hence it follows that

$$
\begin{aligned}
a & =x\left(x a^{2} y\right)\left(x a^{2} y\right) y=\left(x^{2} a\right) a y\left(x a^{2} y\right) y \\
& =a y\left(x a^{2} y\right) y\left(x^{2} a\right)
\end{aligned}
$$

that is, $a \in a S a$ holds for every element $a$ of $S$. Thus $S$ is a regular semigroup.

On the other hand, we have

$$
\begin{equation*}
e x=e x e=x e \tag{5}
\end{equation*}
$$

for every idempotent element $e$ and every element $x$ of $S$. Therefore the set $E(S)$ of all idempotent elements of $S$ is contained in the center of $S$, and hence $S$ is a semilattice of groups, indeed.

The statement of Theorem 5 remains true with [left, right, quasi-. and completely] regular instead of "intra-regular". Hence we have the following result.

Theorem 6. For a (3,4)-commutative semigroup $S$ the following conditions are equivalent:
(a) $S$ is regular.
(b) $S$ is right regular.
(c) $S$ is completely regular.
(d) $S$ is quasi-regular.
(e) $S$ is an inverse semigroup.
(f) $S$ is a semilattice of rectangular groups.
(g) $S$ is a commutative Clifford semigroup.

Theorem 7. If $A$ is a globally idempoten bi-ideal of a (3,4)-commutative semigroup $S$, then $A$ is a two-sided ideal of $S$.
Proof. In this situation we obtain by Lemma 3,

$$
\begin{equation*}
A S A=A S=S A \subseteq A \tag{6}
\end{equation*}
$$

whence $A$ is a two-sided ideal of $S$.
Theorem 8. If $A$ is a complete bi-ideal of a $(3,4)$-commutative semigroup $S$, then $A$ is a two-sided ideal of $S$.
Proof. By using our Lemma 3, we have

$$
\begin{aligned}
A & =A S A=(A S)(A S) A S A=A S A(A S)(A S) \\
& =S A S(A S A) A
\end{aligned}
$$

whence it follows that $A$ is a two-sided ideal of $S$.
Theorem 9. Let $S$ be a (3,4)-commutative semigroup and $B$ a bi-ideal of $S$ having the property $B^{2}=B^{3}$. Then $B^{2}$ is a two-sided ideal of $S$.
Proof. By using our Lemma 3, we get

$$
S B^{2}=S B^{6}=B^{4} S B^{2} \subseteq B^{2} S B \subseteq B^{2}
$$

and similarly,

$$
B^{2} S=B^{6} S=B^{3} S B^{3} \subseteq B S B^{2} \subseteq B^{2}
$$

whence it follows that the power $B^{2}$ is a two-sided ideal of $S$.
Remark. For instance, the class of all regular semigroups does have the property $B^{3}=B^{2}$ for every bi-ideal $B$.

Theorem 10. Let $S$ be a regular semigroup having a (3,4)-commutative bi-ideal semigroup $\mathbf{B}(S)$. Then $S$ is a Clifford semigroup and $\mathbf{B}(S)$ is a commutative band.

Proof. If $S$ is a regular semigroup, then every bi-ideal $B$ of $S$ is complete, i.e.

$$
B=B S B
$$

Hence $B=(B S B)(S B)(S B)=(S B)^{2}(B S B)=B(B S B) S B S$, whence it follows that every bi-ideal $B$ of $S$ is a two-sided ideal of $S$. Thus $S$ is a regular duo semigroup which is a Clifford semigroup. Therefore, by a criterion of the author [7], the bi-ideal semigroup $\mathbf{B}(S)$ is a commutative band.

Theorem 11. Let $S$ be a $\pi$-regular (3,4)-commutative semigroup. Then $S$ is a semilattice of nil-extensions of groups.
Proof. This is a consequence of our Lemma 2 and a well known result due to S. Bogdanović.

Theorem 12. Suppose that $S$ is a (3,4)-commutative semigroup and $A$ is an arbitrary $(3,4)$-ideal of $S$. Then $A$ is a 7 -ideal of $S$.
Proof. By using the $(3,4)$-commutativity of the power semigroup $\mathbf{P}(S)$ we obtain

$$
\begin{aligned}
A^{3} S A^{4} & =S A^{7}=A^{7} S=A^{5} S A^{2}=A\left(S A^{2}\right) A^{4}=A^{4} S A^{3} \\
& =A^{6} S A=A^{2}(S A) A^{4} \subseteq A,
\end{aligned}
$$

whence $A$ is a 7 -ideal of $S$, indeed.
Theorem 13. Suppose that $S$ is a (3,4)-commutative semigroup and $A$ is a complete $(0, k)$-ideal of $S$ [resp. $(k, 0)$-ideal of $S]$, where $k$ is an arbitrary fixed positive integer. Then $A$ is a two-sided ideal of $S$.
Proof. (i) $k=1$. In this case we have

$$
A=S A=S^{6} A=S^{3} A S^{3}
$$

whence $A$ is a two-sided ideal of $S$.
(ii) $k=2$. We have $A=S A^{2}=(S A)^{2}(S A)^{2}=\left(A S A^{2}\right)(S A S)$, and thus $A$ is a two-sided ideal of $S$.
(iii) $k \geq 3$. In this case we have

$$
A=S A^{k}=\left(S A^{k-1}\right)\left(S A^{k}\right)=A^{k}\left(S A^{k-1} S\right)
$$

whence it follows that $A$ is a two-sided ideal of $S$. The proof is similar in the bracketed case, too.

Theorem 14. Suppose that $S$ is a (3,4)-commutative semigroup and $A$ is a complete ( $m, n$ )-ideal of $S$, where $m, n$ are fixed positive integers such that $m+n \geq 3$. Then $A$ is a two-sided ideal of $S$.
Proof. The proof of this theorem is very similar to that of Theorem 13, and thus we omit it.

Theorem 15. Suppose that $S$ is a $(3,4)$-commutative semigroup and $A$ is a globally idempotent $(m, n)$-ideal of $S$, where $m, n$ are arbitrary fixed non-negative integers such that $m+n \geq 1$. Then $A$ is a two-sided ideal. Proof. We have

$$
A^{m} S A^{n}=A S A=A S=S A=A
$$

if $m, n$ are positive integers. Hence $A$ is a two-sided ideal of $S$. If $m=0$, $n>0$ we have

$$
S A^{n}=S A^{6}=A^{3} S A^{3}=A^{3}\left(A^{3} S\right)=S A=A S \subseteq A,
$$

whence $A$ is a two-sided ideal of $S$. The proof is similar if $m>0, n=0$.
Theorem 16. Let $S$ be a (3,4)-commutative semigroup. Then the product $S E(S)$ is contained in the center of $S$.
Proof. If $x$ is an arbitrary element of a (3,4)-commutative semigroup $S$ and $e \in E(S)$, then, for every $a \in S$, we have

$$
a(x e)=(e a) x e=(x e)(e a)=(x e) a,
$$

that is, every product $x e$ is contained in the center of $S$.
Theorem 17. Suppose that $S$ is a (3,4)-commutative semigroup and $A$ is an arbitrary $(m, n)$-ideal of $S$, where $m+n \geq 7$. Then $A$ is an $(m+n)$-ideal of $S$.
Proof. Proof is similar to that of Theorem 12 by using (3,4)-commutativity of the power semigroup $\mathbf{P}(S)$.

## References

[1] Cherubini Spoletini, A. and A. Varisco, Some properties of $E-m$ semigroups, Semigroup Forum, 17(1979), 153-161.
[2] Clifford, A.H. and G.B. Preston, The algebraic theory of semigroups I-II, Amer. Math. Soc., Providence, R.I. 1964, 1967.
[3] Galbiati, J.L. and M.L. Veronesi, Sui semigruppi che sono un band dit-semigruppi, Ist. Lombardo, Rend. Sci., A114(1980), 217-234.
[4] Howie, J.M., An introduction to semigroup theory, Academic Press, London-New York-San Francisco, 1976.
[5] Lajos, S., Generalized ideals in semigroups, Acta Sci. Math., 22(1961), 217-222.
[6] Lajos, S., On semilattices of groups, Proc. Japan Acad., 45(1969), 383-384.
[7] Lajos, S., A note on semilattices of groups, Acta Sci. Math., 33(1972), 315-317.
[8] Lajos, S., Characterizations of semigroups by ( $m, n$ )-ideals, In "Notes on Semigroups VII", K. Marx Univ. Economics, Dept. Math., Budapest, No.4(1981), 2529.
[9] Lajos, S., Fibonacci characterizations and ( $m, n$ )-commutativity in semigroup theory, Pure Math. Appl., Ser A, 1(1990), 59-65.
[10] Petrich, M., Introduction to semigroups, Merrill Books, Columbus, Ohio, 1973.
[11] Restivo, A. and C. Reutenauer, On the Burnside problem for semigroups, J. Algebra, $89(1984), 102-104$.

Department of Mathematics, Budapest University for Economics, Kinizsi
u. 1-7, H-1828 Budapest, Hungary

