SOME COMMUTATIVITY THEOREMS ON CERTAIN RINGS

R. D. Giri and R. R. Rakhunde

We prove (1) a semi-prime ring R satisfying the condition $[x y z,[x y, y x]]=$ 0 , is commutative provided Char $R \neq 2$ and also (2) a non-associative 2torsion free ring with unity 1 satisfying the condition $\left[x^{2} y^{2}-x y, x\right]=0$ or $\left[x^{2} y^{2}-x y, y\right]=0$, is commutative.

Introduction

Initially Gupta [3] proved that division ring D which satisfies the polynomial identity $x y^{2} x=y x^{2} y$ for all $x, y \in D$ must be commutative. This was generalized by Awtar [2] as "A semi-prime ring R satisfying the condition $x y^{2} x-y x^{2} y \in Z(R)$ is commutative." Al-Mojil generalized this theorem by showing that a 2 -torsion free semi-prime ring in which $x y$ commutes with $x y^{2} x-y x^{2} y$ for all $x, y \in R$, is commutative.

We generalize this result as "In a 2 -torsion free semi-prime ring, if $x y z$ commutes with $x y^{2} x-y x^{2} y$ for all $x, y, z \in R$, then R is commutative.

A result proved by Ashraf and Quadri [5] is that a semi-prime ring satisfying the condition $(x y)^{2}-x y \in Z(R)$ is commutative. We generalize this result by showing that a non-associative ring satisfying either of the conditions $\left[x^{2} y^{2}-x y, x\right]=0$ and $\left[x^{2} y^{2}-x y, y\right]=0$, is commutative provided Char $R \neq 2$.

Lemma 1.1. Posner [6, Theorem 1] : Let R be a 2-torsion free (namely Char $R \neq 2$) prime-ring and d_{1}, d_{2} derivations of R such that the iterate d_{1}, d_{2} is also a derivation. Then one at least of d_{1}, d_{2} is zero.

Lemma 1.2. Herstein [4, Theorem]: Let R be a ring having no non-zero nil ideals in which for every $x, y \in R$ there exists integer $m=m(x, y) \geq 1$, $n=n(x, y) \geq 1$ such that $\left[x^{m}, y^{n}\right]=0$. Then R is commutative.

Received March 7, 1991.

Theorem 1.3. Let R be a 2-torsion free semi-prime ring such that $[x y z,[x y, y x]]=0$ for all x, y in R. Then R is commutative.
Proof. By hypothesis,

$$
\begin{equation*}
\left(x y^{2} x-y x^{2} y\right) x y z=x y z\left(x y^{2} x-y x^{2} y\right) \tag{1}
\end{equation*}
$$

Replacing x by $x+y$ in (1), we obtain

$$
\begin{align*}
& \left(x y^{2} x-y x^{2} y\right)\left(x y z+y^{2} z\right)+\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]\left(x y z+y^{2} z\right) \\
& \quad=\left(x y z+y^{2} z\right)\left(x y^{2} x-y x^{2} y\right)+\left(x y z+y^{2} z\right) \tag{2}\\
& \quad\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]
\end{align*}
$$

Again replace x by $x+y$ in (2) to yield

$$
\begin{align*}
& {\left[x y^{2} x-y x^{2} y+y^{2}(y x-x y)+(x y-y x) y^{2}\right]\left[x y z+y^{2} z+y^{2} z\right]} \\
& \quad+\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]\left[x y z+y^{2} z+y^{2} z\right] \tag{3}\\
& =\left(x y z+y^{2} z+y^{2} z\right)\left[x y^{2} x-y x^{2} y+y^{2}(y x-x y)+(x y-y x) y^{2}\right] \\
& \quad+\left(x y z+y^{2} z+y^{2} z\right)\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]
\end{align*}
$$

Using (2) in (3), we obtain

$$
\begin{align*}
& {\left[x y^{2} x-y x^{2} y+y^{2}(y x-x y)+(x y-y x) y^{2}\right] y^{2} z} \\
& \quad+\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]\left[x y z+y^{2} z+y^{2} z\right] \tag{4}\\
& =y^{2} z\left[x y^{2} x-y x^{2} y+y^{2}(y x-x y)+(x y-y x) y^{2}\right] \\
& \quad+\left[x y z+y^{2} z+y^{2} z\right]\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]
\end{align*}
$$

Again replacement of x by $x+y$ in (4) yields

$$
\begin{aligned}
& {\left[x y^{2} x-y x^{2} y+y^{2}(y x-x y)+(x y-y x) y^{2}\right] y^{2} z} \\
& \quad+\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right] y^{2} z \\
& \quad+\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]\left[x y z+y^{2} z+y^{2} z+y^{2} z\right] \\
& =y^{2} z\left[x y^{2} x-y x^{2} y+y^{2}(y x-x y)+(x y-y x) y^{2}\right] \\
& \quad+\left[x y z+y^{2} z+y^{2} z+y^{2} z\right]\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right]
\end{aligned}
$$

Simplifying and using (4), we obtain

$$
2\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right] y^{2} z=2 y^{2} z\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right] .
$$

But since R is 2 -torsion free, so we obtain

$$
\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right] y^{2} z=y^{2} z\left[y^{2}(y x-x y)+(x y-y x) y^{2}\right] .
$$

i.e.

$$
\begin{equation*}
\left[(x y-y x) y^{2}-y^{2}(x y-y x)\right] y^{2} z=y^{2} z\left[(x y-y x) y^{2}-y^{2}(x y-y x)\right] \tag{5}
\end{equation*}
$$

Replacing z by $z+y$ in (5) and using (5) we obtain

$$
\left[(x y-y x) y^{2}-y^{2}(x y-y x)\right] y^{3} z=y^{3}\left[(x y-y x) y^{2}-y^{2}(x y-y x)\right]
$$

i.e.

$$
\begin{equation*}
\left[\left[[x, y], y^{2}\right], y^{3}\right]=0 \tag{6}
\end{equation*}
$$

Let I_{r} denote the inner derivation with respect to r i.e. $I_{r}: X \rightarrow[r, x]$, then (6) becomes $I_{y^{3}} I_{y^{2}} I_{y}(x)=0$. Using lemma 1.1 which is applicable in prime rings we have either $I_{y^{3}} I_{y^{2}}=0$ or $I_{y}=0$. If $I_{y^{3}} I_{y^{2}}=0$ then $I_{y^{3}} I_{y^{2}}(x)=0$ for $x, y \in R$. Then again by lemma 1.1. Either $I_{y^{3}}=0$ or $I_{y^{2}}=0$ i.e. $y^{3} \in Z(R)$ or $y^{2} \in Z(R)$. Then in both the cases we have either $\left[y^{3}, x\right]=0$ or $\left[y^{2}, x\right]=0$ which by lemma 2.2 yields that R is commutative. Now consider the case $I_{y}=0$ which implies $I_{y}(x)=0$ or $x y-y x=0$ i.e. $x y=y x$.

Thus in all the cases R is commutative. Since R is isomorphic to subdirect sum of prime ring R_{α} each of which as homomorphic image of R satisfies the hypothesis imposed on R so theorem holds for semi-prime rings also.

Theorem 1.4. A non-associative ring with unity 1 satisfying either of the conditions:

$$
\begin{array}{ll}
\text { (a) }\left[x^{2} y^{2}-x y, x\right]=0 & \text { (b) }\left[x^{2} y^{2}-x y, y\right]=0
\end{array}
$$

is commutative provided it is 2-torsion free.
Proof. By hypothesis (a) we have

$$
\begin{equation*}
\left(x^{2} y^{2}-x y\right) x=x\left(x^{2} y^{2}-x y\right) \tag{7}
\end{equation*}
$$

Replacing y by $y+1$ in (7) and using it, we obtain

$$
2 x\left(x^{2} y\right)=2\left(x^{2} y\right) x
$$

Since R is 2 -torsion free hence

$$
\begin{equation*}
x\left(x^{2} y\right)=\left(x^{2} y\right) x \tag{8}
\end{equation*}
$$

Now replacing x by $x+1$ in (8) and using it we yield

$$
\begin{equation*}
2 x(x y)+x y=2(x y) x+y x \tag{9}
\end{equation*}
$$

Again replacing x by $x+1$ and using (9) we obtain

$$
2 x y=2 y x
$$

i.e. $2(x y-y x)=0$. But R is 2 -torsion free.

So we have $x y=y x$. Thus R is commutative. Hypothesis (b) gives us

$$
\begin{equation*}
\left(x^{2} y^{2}-x y\right) y=y\left(x^{2} y^{2}-x y\right) \tag{10}
\end{equation*}
$$

Replacing x by $x+1$ in (10) and using (10) we obtain

$$
2\left(x y^{2}\right) y=2 y\left(x y^{2}\right)
$$

But R is 2 -torsion free, hence

$$
\left(x y^{2}\right) y=y\left(x y^{2}\right)
$$

Now replace y by $y+1$ in (11) and use (11) to obtain

$$
\begin{equation*}
2(x y) y+x y=2 y(x y)+y x \tag{11}
\end{equation*}
$$

Again replacing y by $y+1$ in (12) and using (12) we obtain $2(x y-y x)=0$, since R is 2 -torsion free, this yields $x y=y x$. Thus R is commutative.
Example. The rings $R_{1}=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in G F(2)\right\}$ and
$R_{2}=\left\{\left.\left[\begin{array}{ll}0 & 0 \\ a & b\end{array}\right] \right\rvert\, a, b \in G F(2)\right\}$ respectively exhibit that polynomial identities $\left[x^{2} y^{2}-x y, x\right]=0$ and $\left[x^{2} y^{2}-x y, y\right]=0$ are satisfied though these rings are non commutative, without identity. This shows that in hypothesis of theorem 1.4 existence of identity and $C h a r R \neq 2$, are essential conditions.

References

[1] Abdullh-H-Almojil, On commutativity of semi-prime rings, J. Austral. Math. Soc. (Series A) 32-1982, 48-51.
[2] Awtar R., A remark on commutativity of certain rings, Proc. Amer. Math. Soc. 41(1973), 370-372.
[3] Gupta R.N., Nilpotent matrices with invertible transpose, Proc. Amer. Math. Soc. 24-1970, 372-575.
[4] Herstein I.N., A commutativity theorem, J. Algebra 38 (1976), 112-118.
[5] M.A. Quadri, Mohd. Ashraf and M.A. Khan, A commutativity conditions for semi-primerings II, Bull. Austral. Math. Soc. Vol:33(1986), 71-73.
[6] Posner E.C., Derivation in prime rings, Proc. Amer. Math. Soc. 8(1957), 10931100.

Department of Mathematics, Nagpur University Campus, Nagpur 440010 (M.S.), India.

