ON A COMMUTATIVITY THEOREM OF QUADRI FOR SEMI-SIMPLE RINGS

R. D. Giri and Ashok R. Dhoble

In this paper we prove that a semi-simple ring R in which for any x, y in R, there exist positive integers $m=m(x, y)$ and $n=n(x, y)$ such that $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$, then R is commutative.

1. In a paper [3], M.A. Quadri and M.A. Khan proved as follows: Suppose in a semi-simple ring R, for a pair of elements x, y in R, there exist positive integers $m=m(x, y)$ and $n=n(x, y)$ such that $\left[x^{m},(x y)^{n}\right]=\left[(y x)^{n}, x^{m}\right]$, then R is commutative. We generalize this result by taking hypothesis $\left[x^{m},(x y)^{n}\right]-\left[(y x)^{n}, x^{m}\right] \in Z(R)$. In fact we prove the more general version of this fact.

Theorem. Let R be a semi-simple ring, in which for any x, y in R there exist positive integers $m=m(x, y)$ and $n=n(x, y)$ such that $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$, then R is commutative.

In all that follows R will be an associative ring. $Z(R)$ denotes the center of R and for any pair a, b in $R,[a, b]=a b-b a$.

2. To prove the above theorem we establish the following lemmas.

Lemma 2.1. If $[a,[a, b]]=0$ for all $a, b \in R$ then $2[a, b]^{2}=\left[a,\left[a, b^{2}\right]\right]$. Proof. It is straighforward to check.

Lemma 2.2. Let R be a prime ring in which for any x, y in R there exist positive integers $\ell=\ell(x, y), m=m(x, y)$ and $n=n(x, y)$ such that $\left[x^{\ell},\left[x^{m}, y^{n}\right]\right]=0$, then R has no non zero nilpotent element.

[^0]Proof. Let a be a non zero element of R with $a^{2}=0$. In the hypothesis, putting $a x$ for x and $x a$ for y and using $a^{2}=0$, we obtain

$$
\begin{equation*}
(a x)^{m+\ell}(x a)^{n}=0 \tag{1}
\end{equation*}
$$

Again putting $x a+x$ for x and using $a^{2}=0$, we get

$$
(a x a+a x)^{m+\ell}(x a)^{n}=0 .
$$

Simplifying the above equation and using $a^{2}=0$, we get

$$
\left\{(a x)^{m+\ell} a+(a x)^{m+\ell}\right\}(x a)^{n}=0
$$

Using (1), we get $(a x)^{m+\ell} a(x a)^{n}=0$ which further yields

$$
\begin{equation*}
(a x)^{m+\ell+n+1}=0 \text { for all } x \in R \tag{2}
\end{equation*}
$$

This implies $a R=0$. Because if $a R \neq 0$, then the equation (2) asserts that $a R$ is a non zero nil right ideal, satisfying the identity $(b)^{m+\ell+n+1}=0$ for all $b \in a R$. But by Herstein's lemma [1, Lemma 1.1], R has a non zero nilpotent ideal which is a contradiction. Hence $a R=0$ i.e. $a R a=(0)$. This forces that $a=0$ as R is prime.

Lemma 2.3. For elements a, b, c of a ring R.
(1) If $[a, b]=0$ then $[a,[b, c]]=[b,[a, c]]$
(2) If $[a, b]=0$ and $[a,[b, c]]=0$ then $\left.\left[a^{m}, b^{n}, c\right]\right]=0$ for all positive integers m and n.
Proof. (1) is straightforward. (2) From (1) it follows that $0=\left[a^{m},[b, c]\right]$ $=\left[b,\left[a^{m}, c\right]\right]$ whence $0=\left[b^{n},\left[a^{m}, c\right]\right]=\left[a^{m},\left[b^{n}, c\right]\right]$.

Lemma 2.4. Let R be a prime ring satisfying hypothesis of lemma 2.2, then R is commutative.
Proof. Without loss of generality, we may assume by Lemma 2.3 (2) that $\ell=m$. Then by hypothesis

$$
\begin{equation*}
\left[x^{m},\left[x^{m}, y^{n}\right]\right]=0 \tag{3}
\end{equation*}
$$

If Char $R \neq 2$, putting y^{2} for y in (3), we get

$$
\begin{equation*}
\left[x^{m},\left[x^{m}, y^{2 n}\right]\right]=0 . \tag{4}
\end{equation*}
$$

Choose $a=x^{m}, b=y^{n}$ in lemma 2.1 so that hypothesis becomes $\left[x^{m},\left[x^{m}, y^{n}\right]\right]=$ 0 . Therefore we conclude that

$$
\begin{equation*}
2\left[x^{m}, y^{n}\right]^{2}=\left[x^{m},\left[x^{m}, y^{2 n}\right]\right] \tag{5}
\end{equation*}
$$

R.H.S. of $(5)=$ L.H.S. of $(4)=0$. Hence L.H.S. of $(5)=2\left[x^{m}, y^{n}\right]^{2}=0$, since Char $R \neq 2$ we have $\left[x^{m}, y^{n}\right]^{2}=0$. This further yields by lemma 2.2 , that $\left[x^{m}, y^{n}\right]=0$. Now applying Herstein's theorem [2], we get R is commutative.

If Char $R=2$, on simplifying (3), we obtain $\left[x^{2 m}, y^{n}\right]=0$. This again by Herstein's theorem [2, Theorem 1] gives that R is commutative.

Lemma 2.5. Let R be a division ring, in which for given x, y in R, there exist positive integers $m=m(x, y)$ and $n=n(x, y)$ such that $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$, then R is commutative.
Proof. Let $x \neq 0$. Then by hypothesis there exist positive integers $m=$ $m\left(x, x^{-1} y\right)$ and $n=n\left(x, x^{-1} y\right)$ such that $\left[x,\left[x^{m},\left(x, x^{-1} y\right)^{n}+\left(x^{-1} y x\right)^{n}\right]\right]=$ 0 . This implies that $\left[x,\left[x^{m}, y^{n}+x^{-1} y^{n} x\right]\right]=0$. i.e.

$$
x^{m+1} y^{n}-x y^{n} x^{m}-x^{m-1} y^{n} x^{2}+x^{-1} y^{n} x^{m+2}=0
$$

Multiplying by x on the left, we obtain

$$
x^{m+2} y^{n}-x^{2} y^{n} x^{m}-x^{m} y^{n} x^{2}+y^{n} x^{m+2}=0
$$

Which on simplification yields

$$
\left[x^{2},\left[x^{m}, y^{n}\right]\right]=0 .
$$

Since every division ring is prime, so by lemma 2.4 we have that R is commutative.
Proof of Theorem. First, we claim that theorem is true for primitive rings. If R is division ring (which in particular is primitive also) satisfying $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$, then by Lemma $2.5 R$ is commutative. Suppose R is primitive ring which is not a division ring then it will not satisfy $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$. For instance we note that no complete matrix ring D_{r} over a division ring D with $r>1$ satisfies the identity $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$. This can be verified by taking D_{2} and elements $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), y=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ in D_{2}. Hence we get a contradiction. That is theorem holds for primitive rings.

Now if R is semi simple ring then it is isomorphic to a subdirect sum of primitive rings R_{α} each of which is a homomorphic image of R. Note that the identity $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$ is inherited by all subrings and all homomorphic images of R, hence R_{α} and subrings of R are all commutative. Therefore the semi-simple ring R is commutative.

The condition of semi simplicity can not be dropped. This can easily be seen by taking R as the ring of 3×3 strictly upper triangular matrices over an arbitrary ring. Here hypothesis $\left[x,\left[x^{m},(x y)^{n}+(y x)^{n}\right]\right]=0$ is satisfied by R yet it is not commutative.

To be precise we take $R=\left\{\left.\left(\begin{array}{ccc}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c, d \in Z\right\}$ which is a ring of 3×3 strictly upper triangular matrix over Z.

References

[1] I.N. Herstein, Topics in ring theory, University of Chicago Press, Chicago and London, 1969.
[2] —_ A Commutativity Theorem, J. Algebra 38(1976), 238-241.
[3] M.A. Quadri and M.A. Khan, A theorem on commutativity of semi-simple rings, Soochow Journal of Mathematics, Vol.11 pp.97-99, December 1985.

Department of Mathematics, Nagpur University Campus, Nagpur 440010 (M.S.), India.

[^0]: Received December 15, 1990.

