HAUSDORFF DIEMENSION OF CANTOR-LIKE SETS

C. Ganesa Moorthy, R. Vijaya and P. Venkatachalapathy

1. Introduction

Hausdorff showed that the Hausdorff dimension of Cantor ternary set is $\log 2 / \log 3$. H.H. Lee and C.Y. Park [1] calculated the Hausdorff dimension of some symmetric Cantor sets. They used Lebesgue function to calculate them. In this paper, we extend the notion of Lebesgue function and we find the Hausdorff dimension of some 'Cantor-type' sets, which form a larger class than the class of symmetric Cantor sets considered by H.H. Lee and C.Y. Park.

2. Definitions

Suppose that F is a subset of R. For every positive α and ε, put

$$
H_{\alpha}^{\varepsilon}(F)=\inf \sum_{n=1}^{\infty}\left[d\left(A_{n}\right)\right]^{\alpha}
$$

where the infimum runs over all countable coverings of F by sets A_{n} with diameter, $d\left(A_{n}\right)=\sup \left\{|x-y|: x, y \in A_{n}\right\}$, less than ε. For every positive $\alpha, H_{\alpha}(F)=\sup H_{\alpha}^{\varepsilon}(F)$ where the supremum runs over all positive $\varepsilon>0$.

It is known that [2] there exists a unique point $\alpha_{0} \in[0, \infty]$ such that $H_{\alpha}(F)=\infty$ for $\alpha<\alpha_{0}$ and $H_{\alpha}(F)=0$ for $\alpha>\alpha_{0}$. This value α_{0} is called the Hausdorff dimension of F and it is denoted by $\operatorname{dim} F$.

Let $\left(k_{n}\right)_{n=1}^{\infty}$ be a fixed sequence of positive integers such that $k_{n} \geq 2$, for every n. Let $\left(c_{n}\right)_{n=0}^{\infty}$ be another fixed sequence of positive numbers such that

$$
0<k_{n} c_{n}<c_{n-1}, \text { for every } n=1,2, \cdots
$$

Received October 20, 1990.

Define, for every natural number n,

$$
r_{n}=\frac{c_{n-1}-c_{n}}{k_{n}-1} .
$$

Let $F_{n}=\left\{\sum_{j=1}^{n} \varepsilon_{j} r_{j}: \varepsilon_{j}=0,1,2, \cdots k_{j}-1, j=1,2, \cdots n\right\}$ and let $F_{0}=$ $\{0\}$. Define $E_{n}=\cup_{t \in F_{n}}\left[t, t+c_{n}\right]$. The set $E=\cap_{n=1}^{\infty} E_{n}$ will be called the Cantor-like set determined by the given two fixed sequences $\left(k_{n}\right)_{n=1}^{\infty}$ and $\left(c_{n}\right)_{n=0}^{\infty}$.

Let E be a Cantor-like set which is defined by two sequences $\left(k_{n}\right)_{n=1}^{\infty}$ and $\left(c_{n}\right)_{n=0}^{\infty}$. Let $h_{n}=\left(k_{1}, k_{2}, \cdots k_{n}\right)^{-1}$. The Lebesgue function L on $\left[0, c_{0}\right]$ is defined as follows: For $\sum_{i=1}^{\infty} \varepsilon_{i} r_{i} \in E$, let

$$
L\left(\sum_{i=1}^{\infty} \varepsilon_{i} r_{i}\right)=\sum_{i=1}^{\infty} \varepsilon_{i} h_{i} .
$$

For each $n \geq 0, t=\sum_{i=1}^{n} \varepsilon_{i} r_{i} \in F_{n}$, we have

$$
\begin{aligned}
L\left(t+c_{n+1}\right) & =L\left(t+\sum_{i=n+2}^{\infty}\left(k_{i}-1\right) r_{i}\right) \\
& =\sum_{i=1}^{n} \varepsilon_{i} h_{i}+\sum_{i=n+2}^{\infty}\left(k_{i}-1\right) h_{i}=\sum_{i=1}^{n} \varepsilon_{i} h_{i}+h_{n+1} \\
& =L\left(t+r_{n+1}\right) .
\end{aligned}
$$

We define L on $\left(t+c_{n+1}, t+r_{n+1}\right)$ to have the constant value that it has at both of the end points, namely, $L(t)+h_{n+1}$. Thus we have defined the function L on $\left[0, c_{0}\right]$. Note that L is a monotone nondecreasing and continuous on $\left[0, c_{0}\right]$ and L is constant on each component interval of $\left[0, c_{0}\right]-E$.

Define a function $w_{L}:(0, \infty) \rightarrow[0, \infty]$ by

$$
w_{L}(t)=\sup \left\{\left|L\left(x_{2}\right)-L\left(x_{1}\right)\right|:\left[x_{1}, x_{2}\right] \subseteq\left[0, c_{0}\right] \text { and }\left|x_{2}-x_{1}\right| \leq t\right\}
$$

We follow these notations in the remaining part of this paper. For us, measure means an outer measure.

3. Results

We need the following Frostman's result what was used by Lee and Park. However we give the proof for completeness.

Theorem 1. Let I be a closed interval in the real line. Suppose that there exists a positive measure μ on I such that

$$
\begin{aligned}
f(t) & =\sup \left\{\mu\left(\left[x_{1}, x_{2}\right]\right):\left[x_{1}, x_{2}\right] \subseteq I, 0<x_{2}-x_{1} \leq t\right\} \\
& =o\left(t^{\alpha}\right)(t \downarrow 0) \text { for some } \alpha>0 .
\end{aligned}
$$

Then $H_{\alpha}(A)$ is positive (so $\operatorname{dim} A \geq \alpha$) whenever A is a compact subset of I with $\mu(A)>0$.
Proof. Choose $0<c<\infty$ such that $f(t) \leq c t^{\alpha}$ for $0<t \leq \delta_{0}$, for some δ_{0}. Consider any open cover $\left\{\left(u_{i}, v_{i}\right)\right\}_{i=1}^{\infty}$ of A such that $v_{i}-u_{i} \leq \delta$, where $\delta \leq \delta$. Then we have

$$
f\left(v_{i}-u_{i}\right) \leq c\left(v_{i}-u_{i}\right)^{\alpha} \text { for every } i
$$

This implies

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left(v_{i}-u_{i}\right)^{\alpha} & \geq \frac{1}{c} \sum_{i=1}^{\infty} f\left(v_{i}-u_{i}\right) \\
& \geq \frac{1}{c} \sum_{i=1}^{\infty} \mu\left(\left[u_{i}-v_{i}\right]\right) \\
& \geq \frac{1}{c} \mu(A) \\
& >0
\end{aligned}
$$

Therefore, $H_{\alpha}^{\delta}(A) \geq \frac{1}{c} \mu(A)$ where $\delta \leq \delta_{0}$ and this implies that $H_{\alpha}(A) \geq$ $\frac{1}{c} \mu(A)$. Thus $H_{\alpha}(A)$ is positive (so $\operatorname{dim} A \geq \alpha$).

Lemma 1. For each natural number n,

$$
h_{n} \leq w_{L}\left(c_{n}\right) \leq 2 h_{n} .
$$

Proof. Since $L\left(c_{n}\right)-L(0)=h_{n}$, the first inequality is clear. Note that L is a continuous monotone nondecreasing function. Fix $x, y \in\left[0, c_{0}\right]$ with $x<y$ and $|x-y| \leq c_{n}$. If $x \in\left[c_{0}-c_{n}, c_{0}\right]$ then

$$
L(y)-L(x) \leq L\left(c_{0}\right)-L\left(c_{0}-c_{n}\right)=h_{n} .
$$

If $x \in\left[0, c_{0}-c_{n}\right]$ then define

$$
t_{1}=\max \left\{t \in F_{n}: t \leq x\right\}
$$

and

$$
t_{2}=\min \left\{t \in F_{n}: x<t\right\} .
$$

If $x \in\left[0, c_{0}-c_{n}\right]$ then

$$
\begin{aligned}
L(y)-L(x) & \leq L\left(t_{2}+c_{n}\right)-L\left(t_{1}\right) \\
& =L\left(t_{2}+c_{n}\right)-L\left(t_{2}\right)+L\left(t_{2}\right)-L\left(t_{1}\right) \\
& =h_{n}+h_{n} .
\end{aligned}
$$

Therefore the second inequality in the statement holds too.
Theorem 2. Suppose that $t^{\alpha}=o\left(w_{L}(t)\right)(t \downarrow 0)$ for some $\alpha>0$. Then $H_{\alpha}(E)$ is finite (so $\operatorname{dim} E \leq \alpha$).
Proof. Choose $0<c<\infty$ such that $t^{\alpha} \leq c w_{L}(t)$ for $0<t \leq c_{0}$. Since $E \subseteq E_{j}$ and E_{j} is the union of h_{j}^{-1} intervals of length c_{j}, and c_{j} tends to zero as j tends to infinity, by the previous lemma 1 we have

$$
\begin{aligned}
H_{\alpha}(E) & \leq \liminf _{n \rightarrow \infty} h_{n}^{-1} c_{n}^{\alpha} \\
& \leq c \liminf _{n \rightarrow \infty} h_{n}^{-1} w_{L}\left(c_{n}\right) \\
& \leq 2 c
\end{aligned}
$$

Theorem 3. Let $\alpha=\liminf _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n+1}}$ and $\beta=\lim \sup _{n \rightarrow \infty} \frac{\log h_{n+1}}{\log c_{n}}$. Then $\operatorname{dim} E \in[\alpha, \beta]$.
Proof. Choose j with $c_{j}<1$. For given t with $0<t \leq c_{j}$, choose $n \geq j$ such that $c_{n+1} \leq t \leq c_{n}$. Then $-\log c_{n+!} \geq-\log t \geq-\log c_{n}>0$. By the lemma $1,-\log 2 h_{n} \leq-\log w_{L}\left(c_{n}\right) \leq-\log h_{n}$, for all $n \geq 1$. Since w_{L} is nondecreasing, we also have $0<-\log w_{L}\left(c_{n}\right) \leq-\log w_{L}(t) \leq$ $-\log w_{L}\left(c_{n+1}\right)$ for our t and $n \geq j$.

These three set of inequalities yield

$$
\begin{aligned}
0 & \leq \frac{\log 2 h_{n}}{\log c_{n+1}} \leq \frac{\log w_{L}\left(c_{n}\right)}{\log c_{n+1}} \leq \frac{\log w_{L}\left(c_{n}\right)}{\log t} \leq \frac{\log w_{L}(t)}{\log t} \\
& \leq \frac{\log w_{L}\left(c_{n+1}\right)}{\log t} \leq \frac{\log h_{n+1}}{\log t} \leq \frac{\log h_{n+1}}{\log c_{n}}
\end{aligned}
$$

In particular,

$$
\frac{\log 2}{\log c_{n+1}}+\frac{\log h_{n}}{\log c_{n+1}} \leq \frac{\log w_{L}(t)}{\log t} \leq \frac{\log h_{n+1}}{\log c_{n}} \text { and } 0 \leq \alpha \leq \beta .
$$

Therefore, given $\varepsilon>0$, there exists some $t_{0} \in\left[0, c_{0}\right] \cap[0,1)$ such that

$$
\alpha-\varepsilon<\frac{\log w_{L}(t)}{\log t}<\beta+\varepsilon \text { whenever } 0<t<t_{0}<1
$$

That is, $t^{\alpha-\varepsilon} \geq w_{L}(t) \geq t^{\beta+\varepsilon}$ whenever $0<t<t_{0}$. Now the theorem 1 applied to

$$
\mu(A)=\inf \left\{\sum_{i=1}^{\infty}\left[L\left(y_{i}\right)-L\left(x_{i}\right)\right]: A \subseteq \cup_{i=1}^{\infty}\left[x_{i}, y_{i}\right] \subseteq\left[0, c_{0}\right]\right\}
$$

when $A \subseteq\left[0, c_{0}\right]$, implies that $\operatorname{dim} E \geq \alpha-\varepsilon$ and theorem 2 implies that $\operatorname{dim} E \leq \beta+\varepsilon$. Therefore $\operatorname{dim} E \in[\alpha, \beta]$.
Lemma 2. If there is a constant k such that $k_{n} \leq k$, for every n, then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n+1}} & =\liminf _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n}}=\liminf _{n \rightarrow \infty} \frac{\log h_{n}}{\log r_{n}} \text { and } \\
\limsup _{n \rightarrow \infty} \frac{\log h_{n+1}}{\log c_{n}} & =\limsup _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n}}=\limsup \\
n \rightarrow \infty & \frac{\log h_{n}}{\log r_{n}}
\end{aligned}
$$

Proof. Notice that

$$
\begin{aligned}
\frac{\log h_{n}}{\log c_{n+1}} & =\frac{\log h_{n+1}}{\log c_{n+1}}+\frac{\log k_{n+1}}{\log c_{n+1}} \\
\frac{\log h_{n+1}}{\log c_{n}} & =\frac{\log h_{n}}{\log c_{n}}-\frac{\log k_{n+1}}{\log c_{n}}
\end{aligned}
$$

Also $0>\frac{1}{\log r_{n}+1}>\frac{1}{\log c_{n}}>\frac{1}{\log r_{n}}$ so that $0<\frac{\log h_{n}}{\log r_{n+1}}<\frac{\log h_{n}}{\log c_{n}}<\frac{\log h_{n}}{\log r_{n}}$, when n is sufficiently large. That is

$$
\frac{\log h_{n}}{\log r_{n}}>\frac{\log h_{n}}{\log c_{n}}>\frac{\log h_{n+1}}{\log r_{n+1}}+\frac{\log k_{n+1}}{\log r_{n+1}} .
$$

The lemma follows from these relations, because

$$
\lim _{n \rightarrow \infty} \frac{\log k_{n}}{\log c_{n}}=\lim _{n \rightarrow \infty} \frac{\log k_{n}}{\log r_{n}}=0
$$

Corollary 1. If $\liminf \lim _{n \rightarrow \infty} h_{n+1}^{-1} c_{n}^{\alpha}$ is a finite positive constant for some $\alpha \in(0, \infty)$, then $\liminf _{n \rightarrow \infty} \frac{\log h_{n+1}}{\log c_{n}}=\alpha=\operatorname{dim} E$.

Proof. Suppose that $\liminf _{n \rightarrow \infty} h_{n+1}^{-1} c_{n}^{\alpha}=k$ for some $k \in(0, \infty)$. Then

$$
\liminf _{n \rightarrow \infty} \log \left(h_{n+1}^{-1} c_{n}^{\alpha}\right)=\log k<\infty
$$

and so $\liminf \lim _{n \rightarrow \infty} \frac{\log h_{n+1}}{\log c_{n}}-\alpha=\liminf _{n \rightarrow \infty} \frac{-\log h_{n+1}}{-\log c_{n}}-\alpha=0$.
Now the theorem 3 implies that $\operatorname{dim} E \geq \alpha$. Also

$$
\begin{aligned}
H_{\alpha}(E) & \leq \liminf _{n \rightarrow \infty} h_{n}^{-1} c_{n}^{\alpha} \\
& \leq \liminf _{n \rightarrow \infty} h_{n+1}^{-1} c_{n}^{\alpha}<\infty \text { so that } \alpha \geq \operatorname{dim} E
\end{aligned}
$$

Therefore, $\operatorname{dim} E=\alpha=\liminf _{n \rightarrow \infty} \frac{\log h_{n+1}}{\log c_{n}}$.
In the same way we can also prove the following corollary.
Corollary 2. If $\liminf _{n \rightarrow \infty} h_{n}^{-1} c_{n}^{\alpha}$ is a finite positive constant for some $\alpha \in(0, \infty)$ and $\left(k_{n}\right)_{n=1}^{\infty}$ is a bounded sequence then

$$
\liminf _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n}}=\alpha=\operatorname{dim} E
$$

Corollary 3. If $\left(k_{n}\right)_{n=1}^{\infty}$ is a bounded sequence, and $\lim _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n}}=\alpha$ exists, then $\operatorname{dim} E=\alpha=\lim _{n \rightarrow \infty} \frac{\log h_{n}}{\log r_{n}}$.
Corollary 4. If $\lim _{n \rightarrow \infty} \frac{c_{n}}{c_{n-1}}=a, k_{m}=k$ for every m, for some constant $k \geq 2$ then

$$
\operatorname{dim} E=\frac{\log k}{-\log a}
$$

Proof. Notice that $\lim _{n \rightarrow \infty}\left(c_{n}\right)^{1 / n}=a$ and so $\lim _{n \rightarrow \infty} \frac{\log h_{n}}{\log c_{n}}=\frac{\log k}{-\log a}$.

References

[1] H.H. Lee and C. Y. Park, Hausdorff dimension of symmetric Cantor sets, Kyungpook Math. J., 28, 1988, 141-146.
[2] C.A. Rogers, Hausdorff Measures, Cambridge University Press, 1970.

Department of Mathematics, Alagappa University, Karaikudi-623 003, India.

