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1. Introduction 

Hausdorff showed that the Hausdorff dimension of Cantor ternary set 
is log 2/ log 3. H.H. Lee and C.Y. Park [1] calculated the Haus따rff di 
mension of some symmetric Cantor sets . They used Lebesgue function to 
calculate them. In this paper, we extend the n。μ。n of Lebesgue function 
and we find the Hausdorff dimension of some ‘Cantor-type' sets, which 
rorm a larger class than the class of symmetric Cantor sets considered by 
IT.II. Lee and C.Y. Park. 

2. Definitions 

Suppose that F is a subset of R. For every positive 0 and é , put 

H~(F) = inr ε[d(An)]" 

where the infimum runs over all countable coverings of F by sets An with 
diameter, d(An) = sup{lx - vl : x , V E An }, less than ε For every positive 
0 , H,,(F) = supH~(F) where the supremum runs over all positive é > 0 

It is known that [2] there exists a unique point 00 E [0 , ∞] such that 
I!,, (F) = ∞ for 0 < 00 and H ,,( F) = 0 for 0 > 00' This value 00 is called 
the Hausdorff dimension 01 F and it is denoted by dim F. 

Let (kn )응1 be a fixed sequence of positive integers such that kn 으 2, 
ror every n. Let (cn )뚱o be another fixed sequence of positive numbers 
such that 

0< kncn < Cn-I , for every n = 1,2,' 
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Define, for every natural number n , 

Cn _l - Cn 
r . 

n - k
n

-1 

Let Fn = {ε?=1 eJr1 · Ej = 0, l ,2,-- 씨 -1 , j = 1,2, .. . n} and let Fo = 

{O}. Define En = U이JιtκE탠댄F.타’n씨1 
Can띠ûωor-서-li싸ike set determined by the given two fixéd sequences (kn )얻 ， and 
( Cn )풍o. 

Let E be a Cantor-like set which is defined by two sequences (kn )풍1 

and (cn )풍。 Let hn = (k" k2, ... kn)-I. The Lebesgue function L on [0，에 
is defined as follows: For L:~1 ê;r; E E , let 

L(ε E: ir;) = εê;h; 

For each η E O, t = ε;누1 ε i ri E Fn, we have 

L(t+cn+d = L(t+ ε (k‘ - l)r‘) 
‘=n+2 

= εê; h; + ε (k; -1)h; = ε ê;h; + hn+l 
i:=1 ‘=n+2 i=l 

= L(t + r n+l). 

We define L on (t + Cn+l , t + rn+l) to have the constant value that it 
has at both of the end points , namely, L(t) + hn+l. Thus we have defined 
the function L on [0, eol ‘ Note that L is a monotone nondecreasing and 
continuous on [0, eol and L is constant on each component interval of 
[0，에 -E 

Define a function WL : (0, ∞) • [0, ∞1 by 

ωdt) = sup{IL( X2) - L(Xl)l: [Xl , X2l 드 [0，에 and IX2 - X, I ::; t}. 

We follow these notat ions in the remaining part of this paper. For us , 
measure means an outer measure. 

3. Results 

We need the following Frostman ’s result what was used by Lee and 
Park. However we give the proof for completeness. 
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Theorem 1. Let 1 be a c/osed interval in the realline. Suppose that there 
exists a positive measure μ on 1 such that 

J(t ) = sup{μ([X l> 헤) : [X l> X2J 드 1, 0 < X2 - X 1 :::; t} 

= oW)(t • 이 Jor some a > 0 

Then H a( A) is positive (so dim A 즈 a) u빠never A is a compact subset 
oJ 1 ψith μ(A) > O. 

Proof Choose 0 < c < ∞ such that J(t) :::; cta for 0 < t :::; óo , for some 
Óo. Consider any open cover {(!μ ， Vi)}않 1 of A such that vi - ui :::; Ó, where 
Ó :::; óo. Then we have 

This implies 

J(Vi - Ui) :::; c(v‘ - Ui)a for every i 

ε(u， - u，)。 > 떻J(Vi - U‘) 

> 떻 μ([U‘ - Vi]) 

> Eμ(A) 

i=1 

> O. 

Therefore, H!(A) ~ ~μ(A) where Ó :::; Óo and this implies that Ha(A ) 으 
iμ(A). Thus Ha(A) is positive (so dim A 즈 a). 

Lemma 1. For each natural number n , 

hn 으 ψL( cn ) :::; 2hn . 

Proof Since L( en) - L(이 = hn , the first inequality is clear. Note that L 
is a continuous monotone nondecreasing function. Fix x , y E [0, 에 with 
X < y and IX- νI :::; cn . If x E [eo - μ， 에 then 

L(y) - L(x) :::; L(eo) - L(여 - en) = hn . 

If x E [0, 이 - 셰 then define 

t1 =max{tEFn :t:::;x} 
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and 
t2 = min{t E κ : x < t} 

L(t2 + μ)-L(t]) 

L(t2 + μ) - L(t2 ) + L(t2 ) - L(t1 ) 

hn + hn . 

< 

If x E [0, co - c,,] then 

L(y) - L(x) 

Then 

Therefore the se∞ndin어uality in the statement holds too. 

Theorem 2. Supp05e that tO = o(ψL(t))(t • 이 for 50me 0 > O. 
Ho(E) is βnite (50 dim E ~ 0) 

Proof Choose 0 < C < ∞ such that tO ~ cwL( t) for 0 < t ~ Co. Since 
E 드 E j and E j is the union of h.;t intervals of length Cj , and Cj tends to 
zero as j tends to infinity, by the previous lemma 1 we have 

lim infn一∞h;1cg

climinfn→∞ h;:1 WL(C’‘) 

<Ho(E) 

2c 

<

<

log hn+1 
and β = limsuPn→∞ 

IOg c" 

n 
-41 

In --” 때
 -
빵
 

@ n 찌
 

ru -a 야
 

L 
Theorem 3. 

Then dim E E [0，데. 

Proof Choose j with Cj < 1. For given t with 0 < t ~ Cj , choose n 즈 j 
such that c,,+1 ~ t ~ c" . Then -log c,,+’ ~ -logt 으 -log c" > O. 
By the lemma 1, -log 2hn 으 -logψL( c,,) ~ -log hn , for all n 즈 1. 
Since WL is nondecreasing, we also have 0 < - log ψL( c,,) ~ -log ψL(t) ~ 

- log WL( c,,+tl for our t and n 즈 J. 
These three set of inequalities yield 

log 2hn < logψL(c，，) < logψL(c，，) < logωL(t) 
log c,,+1 - log c,,+1 - log t log t 
logωL( c,,+tl < log hn +1 < log hn +1 

log t log t - log c" 

<

<

0 

In particular, 

log2 . loghn ~ logwdt) ~ loghn+1 __ ~ n ~ _ ~ 0 --0- + -- 0 ' -'" <--O-fJ\-， <--o'-nT~andO<Q<8 

log c,,+1 ’ log c"H - log t - log c" 
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Therefore, given é > 0, there exists some to E [0, 에 n [0 ,1) 8uch that 

logωL( t) 
Q-é< .- " < β + é whenever 0 < t < to < 1 

log t 

That is, t" - < > ψdt) ::::: tβ+< whenever 0 < t < to . Now the theorem 1 
applied to 

μ(A) = inf{ε[L (Yi) - L(Xi)] : A 드 U않I[Xi ， Yi] 드 [0，떼}， 

when A 드 [0 , 에， implies that dim E 으 Q - é and theorem 2 implies that 
dim E ::::; ß + E. Therefore dim E E [0', 찌 

Lemma 2. Jf there is a constant k such that kn ::::; k , for every n , then 

loghn 
limin[n→~、

“「‘~ log cn +1 

log hn+l 
lim sUPn ∞ n ∞ logen 

log hn ,. " log hn 
= liminL→~、~ =liminL一~、~and

”「」id log cn ”-‘ logrn 

log hn 
" . 

log hn = llInsuPn ---므 = llmsuPn ---
n→∞ logcn →∞ logrn 

Proof Notice that 

--
μ
-
야
 아
-
ι
 

r3-c 

ι
“
 -ri 

l
--얘
 앵
-
h

‘
 

-

--

log hn+l , log kn+l 
------

log Cn+l ’ log Cn+l 
log hn log kn +1 

log Cn log cn 

A Iso 0 > , 1 > -, _, - > -, _1 - so that 0 < ，!와!L < 뿔효"- < 앨흐"-. when 
logT~+l _ logc~_ IOgrn logrn+l IOgCn IOgTn ι 

n is suf뀐cieiltly large: That IS 

log hn _ log hn _ log hn+l , log kn+l 
-‘ 
log r n. log Cn ' log r n+ 1 ’ log rn+1 

The lemma follows from these relations, because 

" log kn " log kn 
11m -,-- = 11m -.-- = u 
n-∞ log Cn n一∞ logrn 

Corollary 1. Jf lim infn→∞h;μc~ is a βnite positive constant for some 
log hn+l 0' E (0 ，∞)， then lim infn→∞「-- = @ = dimE 
IOgι‘ 



202 C. Ganesa Moorthy, R. Vijaya and P. Venkatachalapathy 

Proof SUpp05e that lim infn一。oh갑1C~ = k for 50me k E (0 , ∞). Then 

liminfn_∞ log(h파1C~) = log k < ∞ 

log hn+1 ,.. r -log hn+1 and 50 lim infn→∞ --0 .-'~T J. _ a = lim infn_∞ U ' . T. _ a 0 
IOg en - 10g Cn 

Now the theorem 3 implies that dim E 으 α AI50 

H,, (E) ~ lim infn→∞h;lca 

< liminfn一∞h다1C@ < ∞ 50 that 0 즈 dimE. 

log hn+1 Therefore. dim E = 0 = lim inL_~ ' - 0 ""T' 
’ “-“’ logen 

In the 5ame way we can al50 prove the following corollary 

Corollary 2. Iflim infn_oo h;;-1 c~ is a βnite positive constant for some 
o E (0, ∞) and (kn )얻1 is a bounded sequence then 

lO I! h_ 
liminL一~、-유~ = 0 = dimE ,,-“ log c,‘ 

Corollary 3. If (kn )품I “ a bounded sequence, and lim…。 뿔말 =0 

exists. then dim E = 0 = li m..一~、 앨뇨 . 
‘ ” ’ Jogr

’‘ 
Corollary 4. If li따→∞ 뜸 = a , km = k for every m , for some constant 
k > 2 then 

logk 
dimE = 

' - 0" 

-loga 

Proof Notice that limn
_

∞(en)l!n = a and 50 li때iη1m따1 
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