A NOTE ON SECOND ORDER INTEGRO-DIFFERENTIAL EQUATIONS

A. Zaghrout

In this paper we wish to study the boundedness and asymptotic behaviour of certain class of second order integro-differential equations of the form

$$
\left(a(t) x^{\prime}\right)^{\prime}+b(t) x^{\prime}+c(t) x=K\left(t, x, \int_{0}^{t} H\left(s, x, x^{\prime}\right) d s\right)+Q\left(t, x, x^{\prime}\right)
$$

by means of comparison with the solutions of the second order linear differential equation

$$
\left(a(t) x^{\prime}\right)^{\prime}+b(t) x^{\prime}+c(t) x=0 .
$$

1. Introduction

Recently Grace and Lalli [3], and Agarwal [1] studied the asymptotic behaviour of the integro-differential equation

$$
\begin{equation*}
\left(a(t) x^{\prime}\right)^{\prime}+b(t) x^{\prime}+c(t) x=r(t) \int_{0}^{t} g(s) x(s) d s+p\left(t, x, x^{\prime}\right) \cdots \tag{1.1}
\end{equation*}
$$

as $t \rightarrow \infty$. It was proved that under some suitable conditions on the functions $r(t), g(t)$, and $p\left(t, x, x^{\prime}\right)$, there is a solution of (1.1) satisfying any given initial conditions which tends to a solution of the linear differential equation

$$
\begin{equation*}
\left(a(t) x^{\prime}\right)^{\prime}+b(t) x^{\prime}+c(t) x=0 \tag{1.2}
\end{equation*}
$$

for which the general solution is known. The purpose of this note is to extend earlier results of Grace and Lalli [3] for equation (1.1), and
generalize previously known results of Mehri and Zarghame [4], Bellman [2, p. 112], Trench [7], Pachpatte [6]. Instead of equation (1.1) we shall investigate an equation of the form

$$
\begin{equation*}
\left(a(t) x^{\prime}\right)^{\prime}+b(t) x^{\prime}+c(t) x=K\left(t, x, \int_{0}^{t} H\left(s, x, x^{\prime}\right) d s\right)+Q\left(t, x, x^{\prime}\right) \tag{1.3}
\end{equation*}
$$

Our main assumptions are:

1. Let us assume that if $|x(t)|<p(t) u$ and $\left|x^{\prime}(t)\right| \leq q(t) u$, then there are continuous functions F_{1} and F_{2}, positive, monotonic nondecreasing and satisfying:
(a1) $F_{1}(0)=0, F_{1}(u)$ is submultiplicative for $u>0$,
(a2) $\Omega(r)=\int_{r_{0}}^{r}\left(1 / F_{1}(s)\right) d s \rightarrow \infty$ as $r \rightarrow \infty, r_{0}>0$.
(a3) $F_{2}(x) / n \leq F_{2}\left(\frac{x}{n}\right), n>0$
(a4) $G(r)=\int_{r_{0}}^{r}\left(1 / s+F_{2}(s)\right) d s \rightarrow \infty$ as $r \rightarrow \infty, r_{0}>0$.
and such that the following conditions hold:
(b1) $\left|Q\left(t, x, x^{\prime}\right)\right| \leq C_{1}(t) u+C_{2}(t) F_{1}(u)$,
(b2) $|K(t, x, y)| \leq C_{3}(t) u^{\alpha}|y|, \alpha \in[0,1]$
(b3) $\left|H\left(t, x, x^{\prime}\right)\right| \leq 2 C_{4}(t) F_{2}(u)$
where $C_{i}(t), i=1,2,3,4$ are continuous, positive functions defined on I, $I=[0, \infty)$.
2. $p(t) \geq \max \left\{\left|z_{1}(t)\right|,\left|z_{2}(t)\right|\right\}, q(t) \geq \max \left\{\left|z_{1}(t)\right|,\left|z_{2}(t)\right|\right\}$ where z_{1}, z_{2} are any two linearly independent solutions of (2).

In proofing of the results, the following lemma will be used.
Lemma A (Pachpatte [5]): Let $x(t), g(t), h(t)$ be real-valued positive continuous functions defined on $I, H: I \rightarrow I$ such that $H(u)$ is positive nondecreasing and continuous for $u>0$

$$
|H(u) / n| \leq H|u / n|, n>0
$$

and $w(u)$ be positive, continuous, monotonic, nondecreasing and submultiplicative function for $u>0, W(0)=0$ and suppose further the inequality
$x(t) \leq x_{0}+\int_{0}^{t} g(s) x(s) d s+\int_{0}^{t} g(s) \int_{0}^{s} g(\tau) H(x(\tau)) d \tau d s+\int_{0}^{t} h(s) W(x(s)) d s$
is satisfied for all $t \in I$, where x_{0} is a positive constant. Then

$$
\begin{aligned}
x(t) \leq & \Omega^{-1}\left[\Omega\left(x_{0}\right)+\int_{0}^{t} h(s) W\left(1+\int_{0}^{s} g(\tau) G^{-1}[C(\tau)] d \tau\right) d s\right] \\
& \cdot\left[1+\int_{0}^{t} g(s) G^{-1}|C(s)| d s\right]
\end{aligned}
$$

where

$$
C(t)=G(1)+\int_{0}^{t} g(s) d s, G(r)=\int_{r_{0}}^{r}[1 / s+H(s)] d s, r \geq r_{0}>0
$$

and G^{-1} is the inverse of G and $t \in[0, b] \in I$ so that $C(t) \in \operatorname{Dom}\left(G^{-1}\right)$.

$$
\Omega(r)=\int_{r_{0}}^{r}[1 / W(s)] d s, r \geq r_{0}>0
$$

and Ω^{-1} is the inverse of Ω and $t \in[0, b]$ such that $C(t) \in \operatorname{Dom}\left(g^{-1}\right)$ and

$$
\left(x_{0}\right)+\int_{0}^{t} h(s) W\left|1+\int_{0}^{s} g(\tau) G^{-1}(C(\tau)) d \tau\right| d s \in \operatorname{Dom}\left(\Omega^{-1}\right) .
$$

2. Main Result

In this note we investigate the boundedness and the asymptotic behaviour of the integro-differential equation (1.3). We also prove that if the solutions of (1.2) are bounded, so are the solutions of (1.3) provided the functions K and Q are properly chosen.
Theorem 2.1. In addition to the above assumption, let the following conditions hold:
(i) $a(t), b(t) \& c(t)$ are continuous functions for $t \in I$, and $a(t)>0$.
(ii) $r(t)$ and $p(t) C_{3}(t) / a(t) W(t)$ are in $L(0, \infty)$ where $W(t)$ is the Wronskian of z_{1} and z_{2} and

$$
\begin{equation*}
r(t)=\max \left\{\frac{p(t) C_{1}(t)}{a(t) W(t)}, \frac{p(t) C_{3}(t)}{a(t) W(t)}, C_{4}(t)\right\} \tag{2.1}
\end{equation*}
$$

Then for every pair $\left(x_{0}, x_{0}^{\prime}\right)$ of numbers, there is a solution of (1.3) which can be written in the form

$$
\begin{equation*}
x(t)=A(t) z_{1}(t)+B(t) z_{2}(t) \tag{2.2}
\end{equation*}
$$

satisfying the initial conditions $x(0)=x_{0}$ and $x^{\prime}(0)=x_{0}^{\prime}$, with

$$
\lim _{t \rightarrow \infty} A(t)=\ell \text { and } \lim _{t \rightarrow \infty} B(t)=m .
$$

Proof. Let $x(t)$ be a solution of (1.3) and is written the form (2.2). Applying variation of parameter formula for finding solutions of equation (1.3) we obtain

$$
\begin{align*}
& A(t)=A(0)+\int_{0}^{t}\left[z_{2}(s) h(s) / W(s)\right] d s \\
& B(t)=B(0)-\int_{0}^{t}\left[z_{1}(s) h(s) / W(s)\right] d s \tag{2.3}
\end{align*}
$$

where

$$
\begin{align*}
h(t)= & \frac{1}{a(t)}\left[K\left(t, A z_{1}+B z_{2}, \int_{0}^{t} H\left(s, A z_{1}+B z_{2}, A z_{1}^{\prime}+B z_{2}^{\prime}\right) d s\right)\right] \\
& +Q\left(t, A z_{1}+B z_{2}, A z_{1}^{\prime}+B z_{2}^{\prime}\right) \tag{2.4}
\end{align*}
$$

Then

$$
\begin{equation*}
|A(t)+B(t)| \leq|A(0)+B(0)|+2 \int_{0}^{t} \frac{p(s)}{W(s)}|h(s)| d s \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
|h(t)| \leq & \left.\frac{1}{a(t)} \right\rvert\, K\left(t, A z_{1}+B z_{2}, \int_{0}^{t} H\left(s, A z_{1}+B z_{2}, A z_{1}^{\prime}+B z_{2}^{\prime}\right) d s \mid\right. \\
& +\left|Q\left(t, A z_{1}+B z_{1}, A z_{1}^{\prime}+B z_{2}^{\prime}\right)\right| \tag{2.6}
\end{align*}
$$

Using conditions $(b-1),(b-2)$ and $(b-3)$ we have

$$
\begin{align*}
|h(t)| \leq & \frac{1}{a(t)}\left[\left(C_{3}(t)(|A(t)|+|B(t)|)^{\alpha} \int_{0}^{t} 2 C_{3}(s) F_{2}(|A(s)|+|B(s)|) d s\right)\right. \\
& \left.+C_{1}(t)(|A(t)|+|B(t)|)+C_{2}(t) F_{1}(|A(t)|+|B(t)|)\right] \tag{2.7}
\end{align*}
$$

Take $|A(t)|+|B(t)|=K_{1}(t)$, and using (2.7), then (2.5) takes the form

$$
\begin{aligned}
K_{1}(t) \leq & K_{1}(0)+2 \int_{0}^{t} \frac{p(s)}{W(s) a(s)}\left[C _ { 3 } (s) K _ { 1 } ^ { \alpha } (s) \left(\int_{0}^{s} 2 C_{4}(\tau) F_{2}\left(K_{1}(\tau)\right) d \tau\right.\right. \\
& \left.+C_{1}(s) K_{1}(s)+C_{2}(s) F_{1}\left(K_{1}(s)\right)\right] d s
\end{aligned}
$$

or

$$
\begin{aligned}
K_{1}(t) \leq & K_{1}(0)+2 \int_{0}^{t} \frac{p(s) C_{3}(s) K_{1}^{\alpha}(s)}{W(s) a(s)} \int_{0}^{s} 2 C_{4}(\tau) F_{2}\left(K_{1}(\tau) d \tau\right) \\
& +2 \int_{0}^{t} \frac{p(s) C_{1}(s)}{W(s) a(s)} K_{1}(s) d s+2 \int_{0}^{t} \frac{p(s) C_{2}(s)}{W(s) a(s)} F_{1}\left(K_{1}(s)\right) d s(2.8)
\end{aligned}
$$

This is reduced by (2.1) to

$$
\begin{aligned}
K_{1}(t) \leq & K_{1}(0)+2 \int_{0}^{t} r(s) K_{1}^{\alpha}(s) \cdot 2 \int_{0}^{s} r(\tau) F_{2}(K(\tau)) d s \\
& +2 \int_{0}^{t} r(s) K_{1}(s) d s+2 \int_{0}^{t} \frac{p(s) C_{2}(s)}{W(s) a(s)} F_{1}\left(K_{1}(s)\right) d s .
\end{aligned}
$$

Letting $\alpha=0$, then we have

$$
\begin{aligned}
K_{1}(t) \leq & K(0)+2 \int_{0}^{t} r(s) \int_{0}^{s} 2 r(\tau) F_{2}\left(K_{1}(\tau)\right) d \tau \\
& +2 \int_{0}^{t} \frac{p(s) C_{2}(s)}{W(s) a(s)} F_{1}\left(K_{1}(s)\right) d s
\end{aligned}
$$

Using Lemma A we have

$$
\begin{align*}
K(t) \leq & \Omega^{-1} \left\lvert\, \Omega\left(\left.K_{1}(0)+\int_{0}^{t} \frac{2 p(s) C_{2}(s)}{W(s) a(s)} W\left(1+\int_{0}^{s} 2 r(\tau) G^{-1}[C(\tau)] d \tau\right) d s \right\rvert\,\right.\right. \\
& \times\left[1+\int_{0}^{t} 2 r(s) G^{-1}(C(s)) d s \mid\right. \tag{2.9}
\end{align*}
$$

where

$$
\begin{gather*}
C(t)=G(1)+\int_{0}^{s} 2 r(s) d s, \Omega(r)=\int_{r_{0}}^{r}|1 / W(s)| d s, r \geq r_{0}>0 \\
G(r)=\int_{r_{0}}^{r}\left\{1 / s+F_{2}(s)\right\} d s, r \geq r_{0}>0 \tag{2.10}
\end{gather*}
$$

and G^{-1} and Ω^{-1} as defined before.
From (2.9) and (2.10) the boundedness of $K_{1}(t)$ follows. Since $A(0)$ and $B(0)$ are arbitrary constants and hence can be selected as solutions of the system

$$
\begin{aligned}
A(0) z_{1}(0)+B(0) z_{2}(0) & =x_{0} \\
A(0) z_{1}^{\prime}(0)+B(0) z_{2}^{\prime}(0) & =x_{0}^{\prime}
\end{aligned}
$$

The limit of $A(t)$ and $B(t)$ exist as $t \rightarrow \infty$, since they are bounded. This completes the proof of the theorem.

Remark. The conclusion of the Theorem 2.1 holds if condition $(b-1)$ is replaced by

$$
Q\left(t, x, x^{\prime}\right) \leq C_{1}(t) u
$$

Theorem 2.2. If in addition to the assumptions of theorem 2.1 we further assume that z_{1} and z_{2} are in $L_{p}(0, \infty)$, (are bounded), $1 \leq p \leq \infty$, and

$$
\begin{equation*}
C_{1}(t) / a(t) W(t), C_{2}(t) / a(t) W(t), \text { and }\left[C_{3}(t) / a(t) W(t)\right] \int_{0}^{t} C_{4}(s) d s \tag{2.11}
\end{equation*}
$$

are in $L_{q}(0, \infty)$, where q is the conjugate exponent of p, then the solution $x(t)$ defined by (2.2) is also bounded.
Proof. From (2.2) and (2.3) we have

$$
\begin{aligned}
x(t)= & A(0) z_{1}(t)+B(0) z_{2}(t)+z_{1}(t) \int_{0}^{t} \frac{z_{2}(s)}{W(s) a(s)}\left[\left(k s, A(s) z_{1}(s)\right.\right. \\
& +B(s) z_{2}(x),+B(s) z_{2}(s), \int_{0}^{s} H\left(\tau, A(\tau) z_{1}(\tau)\right. \\
& \left.\left.+B(\tau) z_{2}(\tau), A(\tau) z_{1}^{\prime}(\tau)+B(\tau) z_{2}^{\prime}(\tau)\right) d \tau\right] d s \\
& +z_{1}(t) \int_{0}^{t} \frac{z_{2}(s)}{W(s) a(s)} Q\left(s, A(s) z_{1}(s)+B(z) z_{2}(s),\right. \\
& \left.A(s) z_{1}^{\prime}(s)+B(\tau) z_{2}^{\prime}(s)\right) d s \\
& -z_{2}(t) \int_{0}^{t} \frac{z_{1}(s)}{W(s) a(s)}\left[K \left(s, A z_{1}+B z_{2}, \int_{0}^{s} H\left(\tau, A z_{1}+B z_{2},\right.\right.\right. \\
& \left.\left.A z_{1}^{\prime}+B z_{2}^{\prime}\right) d \tau\right] d s \\
& -z_{2}(t) \int_{0}^{t} \frac{z_{1}(s)}{W(s) a(s)} Q\left(s, A z_{1}+B z_{2}, A z_{1}^{\prime}+B z_{2}^{\prime}\right) d s .
\end{aligned}
$$

Hence by using conditions $(b-a),(b-2),(b-3)$ we obtain

$$
\begin{align*}
|x(t)| \leq & \left|z_{1}(t)\right|\left\{\left.|A(0)|+\int_{0}^{t} \frac{\left|z_{2}(s)\right|}{a(s) W(s)} C_{3}(s) \int_{0}^{s} \right\rvert\, H\left(\tau, A z_{1}+B z_{2}\right.\right. \\
& \left.\left.A z_{1}^{\prime}+B z_{2}^{\prime}\right) d \tau+C_{1}(s)(|A|+|B|)+C_{2}(s) F_{1}(|A|+|B|) \mid d s\right\} \\
& +\left|z_{2}(t)\right|\left\{|B(0)|+\int_{0}^{t} \frac{\left|z_{1}(s)\right|}{W(s) a(s)}\left[C_{3}(s) \int_{0}^{s} H d \tau\right.\right. \\
& \left.\left.+C_{1}(s)(|A|+|B|)+C_{2}(s) F_{1}(|A|+|B|)\right] d s\right\} . \tag{2.12}
\end{align*}
$$

Since $|A(t)|+|B(t)|$ is bounded, then there exists a constant K_{1} such that $|A(t)|+|B(t)| \leq K_{1}$ for $t \geq 0$, and by using condition (3-b) we obtain from (2.12).

$$
|x(t)| \leq\left|z_{1}(t)\right|\left\{|A(0)|+\int_{0}^{t} \frac{\mid z_{2}(s)}{a(s) W(s)}\left\{C_{3}(s) F_{2}\left(K_{1}\right) \int_{0}^{s} 2 C_{4}(\tau) d \tau\right.\right.
$$

$$
\begin{aligned}
& \left.\left.+K_{1} C_{1}(s)+F_{1}\left(K_{1}\right) C_{2}(s)\right\} d s\right]+\left|z_{2}(t)\right|\left\{|B(0)|+\int_{0}^{t} \frac{\left|z_{1}(s)\right|}{W(s) a(s)}\right. \\
& \left..\left\{C_{3}(s) F_{2}\left(K_{1}\right) \int_{0}^{s} 2 C_{4}(\tau) d \tau+K_{1} C_{1}(s)+F_{1}\left(K_{1}\right) C_{2}(s)\right\} d s\right\} .
\end{aligned}
$$

Let us put

$$
\begin{aligned}
K_{2}= & |A(0)|+\left\|z_{2}\right\|_{p} F_{2}\left(K_{1}\right)\|J\|_{q}+K_{1}\left\|z_{2}\right\|_{p}\left\|\frac{C_{1}}{a W}\right\|_{q} \\
& +\left\|z_{2}\right\|_{p} F_{1}\left(K_{1}\right)\left\|\frac{C_{2}}{a W}\right\|_{q},
\end{aligned}
$$

and

$$
\begin{aligned}
K_{3}= & |B(0)|+\left\|z_{1}\right\|_{p} F_{2}\left(K_{1}\right)\|J\|_{q}+K_{1}\left\|z_{1}\right\|_{p}\left\|\frac{C_{1}}{a W}\right\|_{q} \\
& +\left\|z_{1}\right\|_{p} F_{1}\left(K_{1}\right)\left\|\frac{C_{2}}{a W}\right\|_{q},
\end{aligned}
$$

where

$$
J=\frac{C_{3}(t)}{a(t) W(t)} \int_{0}^{t} 2 C(s) d s
$$

Consequently

$$
\begin{equation*}
|x(t)| \leq K_{2}\left|z_{1}(t)\right|+K_{3}|z(t)| . \tag{2.13}
\end{equation*}
$$

Since $p \geq 1$, and the function t^{p} is convex, and hence

$$
\begin{equation*}
\left(\frac{\ell+m}{2}\right)^{p} \leq \frac{1}{2}\left(\ell^{p}+m^{p}\right) . \tag{2.14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
|x(t)|^{p} \leq 2^{p-1}\left(K_{2}\left|z_{1}(t)\right|^{p}+K_{3}\left|z_{2}(t)\right|^{p}\right) \tag{2.15}
\end{equation*}
$$

which implies that $\|x\|_{p} \leq M$, for some constant M. For the case $p=\infty$, inequality (2.13) implies that $x(t) \in L_{\infty}(0, \infty)$. This completes the proof.

Theorem 2.3. Assume that conditions $(b-1)-(b-3)$ in assumption 1 hold with $F_{1}(u)=u^{\alpha+1}, F_{2}(u)=u, 0 \leq \alpha \leq 1$, and let condition (ii) in Theorem 2.1 be replaced by

$$
r(t), C_{4}(t), \text { and } \frac{p(t) C_{1}(t)}{a(t) W(t)} \text { are bounded }
$$

where

$$
r(t)=\max \left\{\frac{p(t) C_{2}}{a(t) W(t)}, \frac{p(t) C_{3}(t)}{a(t) W(t)}\right\}
$$

and
$\left.\mid 1-M^{\alpha} \int_{0}^{\infty} \alpha r(s) \exp \left(\int_{0}^{s}\left[\left\{2 p(\tau) C_{1}(\tau) / a(\tau) W(\tau)\right\}+C_{4}(\tau)\right) d \tau\right) d s\right]^{1 / \alpha} \geq B>0$
for some $M>0$ and $t \in I$. Furthermore assume that z_{1} and z_{2} are in $L_{p}(0, \infty), p \in[1, \infty]$ and condition (2.11) holds, then the conclusion of Theorem 2.2 holds.
Proof. The proof is similar to that of Theorem 2.2, and so will be omitted.

Remarks. (1) If $\alpha=0$ and $F_{2}(u)=u$, then the results of Grace and Lalli [3] are included in Theorems 2.1, 2.2 and 2.3.
(2) If $K\left(t, x, \int_{0}^{t} H\left(s, x, x^{\prime}\right) d s\right)=0$, and $Q\left(t, x, x^{\prime}\right)=C_{1}(t) x$, then Theorem 2.1 contains the results of Trench [7].
(3) The results obtained in this paper are generalization, to some extend, to those of Bellman [2], Mehri and Zarghame [4] and Pachpatte [6].

References

[1] Agarwal, R., A note on Grace and Lalli's paper, J. of Math. Anal. Appl. Vol. 86, No. 2 (1982), 471-475.
[2] Bellman, R., Stability theory for differential equations, McGraw-Hill (1975).
[3] Grace, S. and Lalli, B., Asymptotic behaviour of certain second order integrodifferential equations, J. Math. Anal. Appl. Vol.76, (1980), 84-90.
[4] Mehri, B. and Zarghame, Asymptotic behaviour of certain second order differential equations, J. Math. Anal. Appl. Vol. 31, (1970), 309-313.
[5] Pachpatte, B., On some integral inequalities similar to Bellman-Behari inequalities, J. Math. Anal. Appl. Vol. 49, (1975), 794-802.
[6] Pachpatte, B., Boundedness and asymptotic behaviour of solutions of second order integro-differential equations, J. Math and Phys. Sci. Vol.9, No.2, (1975), 171-175.
[7] Trench, W., On the asymptotic behaviour of solutions of second order linear differential equations, Proc. Amer. Math. Soc. Vol. 14 (1963), 12-14.
[8] Zaghrout, A., On perturbations of nonlinear systems of Volterra integro equations, Inst. of Maths. \& Comp. Sci. (India), to appear (1990).
[9] Zaghrout, A., A note on integro-differential inequalities for differential equations, Analele st. Al-Univ. Cuze Din Iasi (Romania), to appear (1990).

Mathematics Department, Faculty of Science, Al-Azhar University, NasrCity, P.O.Box 9019, Cairo 11765, Egypt.

