DIMENSIONS OF A CANTOR TYPE SET AND ITS DISTRIBUTION SETS

Hung Hwan Lee and In Soo Baek

C.D. Cutler[1] and we [3] showed how to obtain the Hausdorff dimensions and packing dimensions of some subsets on \mathbf{R}.

In this paper, using the strong law of large numbers with the above method, we get the Hausdorff dimensions and packing dimensions of the distribution sets which are dense in a Cantor type set. Further, we show that the Hausdorff dimensions of the distribution sets can be represented by a differentiable function of continuous parameter and that the maximum value of the dimension function is the Hausdorff dimension and packing dimension of the Cantor type set.

We review a generalized expansion of a number in [0,1] ([1]). Let $0<a_{n, 1}<a_{n, 2}<1$ for any integer n. The initial proportions $a_{1,1}, a_{1,2}$ determine a division of $[0,1]$ into three disjoint intervals $\left[0, a_{1,1}\right),\left[a_{1,1}, a_{1,2}\right)$ and $\left[a_{1,2}, 1\right]$. We will indicate that a point $x \in[0,1]$ falls into the i th interval $(i=0,1,2)$ by $I_{1}(x)=i$. Next each interval $\left\{x: I_{1}(x)=i\right\}$ is divided into three disjoint subintervals determined by the proportions $a_{2,1}, a_{2,2}$. This splits $[0,1]$ into 3^{2} disjoint intervals ; $\left\{x: I_{1}(x)=i, I_{2}(x)=\right.$ $j\}(i, j=0,1,2)$. Each interval $\left\{x: I_{1}(x)=i, I_{2}(x)=j\right\}$ is then divided according to the proportions $a_{3,1}, a_{3,2}$. Continuing these processes, we have a generalized expansion $c\left(i_{1}, i_{2}, \cdots, i_{n}, \cdots\right)$ determined by n-cylinder

$$
c\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\left\{x: I_{1}(x)=i_{1}, I_{2}(x)=i_{2}, \cdots, I_{n}(x)=i_{n}\right\} .
$$

Received August 31, 1992.
Supported by TGRC-KOSEF and the Basic Science Research Institute Program, Ministry of Education, 1992.

Definition 1. Let $a_{n, 1}=a$ and $1-a_{n, 2}=b$ for each n. A Cantor type set C is defined as

$$
C=\left\{x \in[0,1]: x=c\left(i_{1}, i_{2}, \cdots\right) \quad i_{j} \in\{0,2\}, j=1,2, \cdots\right\} .
$$

If $a=b$, we call C a symmetric Cantor set, otherwise a skew symmetric Cantor set [3].

Definition 2. Let $n_{0}(x \mid k)$ denote the number of times the digit 0 occurs in the first k places of the generalized expansion $c\left(i_{1}, i_{2}, \cdots\right)$ of x. For $p \in[0,1]$ we define $F(p)=\left\{x \in C: \lim _{k \rightarrow \infty} \frac{n_{0}(x \mid k)}{k}=p\right\}$. We call $F(p)$ a distribution set of C containing the digit 0 in proportion p.

Note that $F(p)$ is dense in C for each p and

$$
C \supseteq \cup_{0 \leq p \leq 1} F(p) .
$$

Let $H D(E)$ and $P D(E)$ denote the Hausdorff dimension of E and the packing dimension of E, respectively. The following proposition is well-known.

Proposition 3 ([2]). The Cantor type set C is the invariant set with open set condition for the similarities $S_{1}(x)=a x$ and $S_{2}(x)=b x+(1-b)$. Hence $H D(C)=P D(C)=s$, where

$$
a^{s}+b^{s}=1
$$

Proposition 4. If we define
$\gamma\left(c\left(i_{1}, i_{2}, \cdots, i_{k}\right)\right)= \begin{cases}p^{n_{0}(x \mid k)}(1-p)^{k-n_{0}(x \mid k)} & \text { if } i_{j} \in\{0,2\} \text { for } j=1,2, \cdots, k \\ 0 & \text { otherwise }\end{cases}$
, where $x \in c\left(i_{1}, i_{2}, \cdots, i_{k}\right)$, then γ extends uniquely a probability measure on the Borel sets of $[0,1]$. Further if

$$
E \subset\left\{x \in[0,1]: \lim _{k \rightarrow \infty} \frac{\log \gamma\left(c_{k}(x)\right)}{\log d\left(c_{k}(x)\right)}=\theta\right\}
$$

with $\gamma(E)>0$, then $H D(E)=P D(E)=\theta$. (Here, $c_{k}(x)$ denotes the k-cylinder containing x)
Proof. It is immediate from Theorem 3.2 [1] and Corollary 4.4 [3].

Now we are ready to get the Hausdorff and packing dimension for a distribution set $F(p)$. Note that we adopt the usual convention that $0 \times \log 0=0$.
Theorem 5. $H D(F(p))=P D(F(p))=\frac{p \log p+(1-p) \log (1-p)}{p \log a+(1-p) \log b}$, where $0 \leq$ $p \leq 1$.
Proof. If

$$
x \in C=\left\{x \in[0,1]: x=c\left(i_{1}, i_{2}, \cdots\right) \quad i_{j} \in\{0,2\}, j=1,2, \cdots\right\}
$$

then

$$
\gamma\left(c_{k}(x)\right)=p^{n_{0}(x \mid k)}(1-p)^{k-n_{0}(x \mid k)}
$$

and

$$
d\left(c_{k}(x)\right)=a^{n_{0}(x \mid k)} b^{k-n_{0}(x \mid k)} .
$$

Thus, for $x \in F(p) \subset C$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{\log \gamma\left(c_{k}(x)\right)}{\log d\left(c_{k}(x)\right)} & =\lim _{k \rightarrow \infty} \frac{n_{0}(x \mid k) \log p+\left[k-n_{0}(x \mid k)\right] \log (1-p)}{n_{0}(x \mid k) \log a+\left[k-n_{0}(x \mid k)\right] \log b} \\
& =\frac{p \log p+(1-p) \log (1-p)}{p \log a+(1-p) \log b}
\end{aligned}
$$

By the strong law of large numbers, $\gamma(F(p))=1$.
Let $h(p)$ be the dimension function for a distribution set $F(p)$. Then $H D(F(p))=P D(F(p))=h(p)$ is a differentiable function of p.

We will show that there exists a proper subset $F\left(\frac{1}{2}\right)$ of C which have the same dimension of C.

Theorem 6. Let C be a symmetric Cantor set. Then

$$
\begin{aligned}
h\left(\frac{1}{2}\right) & =H D\left(F\left(\frac{1}{2}\right)\right)=P D\left(F\left(\frac{1}{2}\right)\right) \\
& =H D(C)=P D(C) .
\end{aligned}
$$

Proof. By Proposition 3, $H D(C)=P D(C)=\frac{-\log 2}{\log a}$. But, it follows from Theorem 5 that $H D\left(F\left(\frac{1}{2}\right)\right)=P D\left(F\left(\frac{1}{2}\right)\right)=\frac{-\log 2}{\log a}$ also.

Since $h\left(\frac{1}{2}\right)$ is equal to $H D(C)=P D(C)$ for a symmetric Cantor set C, it is natural to ask the following question: does there exist $p_{0} \in[0,1]$ such that $h\left(p_{0}\right)=H D(C)=P C(C)$ for a skew symmetric Cantor set C ?

The following theorem gives a positive answer for the above question.

Theorem 7. Let C be a skew symmetric Cantor set C. Then there exists $p_{0} \in[0,1]$ such that

$$
h\left(p_{0}\right)=H D\left(F\left(p_{0}\right)\right)=P D\left(F\left(p_{0}\right)\right)=H D(C)=P D(C)
$$

and $h\left(p_{0}\right)=\max _{0 \leq p \leq 1} h(p)$. Moreover, $p_{0}=a^{s}$, where $a^{s}+b^{s}=1$.
Proof. Plainly there exists $p_{0} \in[0,1]$ such that $h\left(p_{0}\right)=\max _{0 \leq p \leq 1} h(p)$ and $h^{\prime}\left(p_{0}\right)=0$.

Now, suppose $h^{\prime}(p)=0$. Then $\log { }_{q}^{p} \log a^{p} b^{q}=\log p^{p} q^{q} \log \frac{a}{b}$, where $q=1-p$. Noting $\frac{a}{b} \neq 1$ and $a^{p} b^{p} \neq 1$, we have $\frac{\log p^{p} q q}{\log a^{p b q}}=\frac{\log \frac{p}{a}}{\log \frac{a}{b}}$. That is, $h(p)=\frac{\log \frac{p}{a}}{\log \frac{a}{b}}$.

Put $\frac{\log _{q}^{\frac{p}{q}}}{\log \frac{a}{b}}=s$ and $\alpha=\frac{p}{q}$. Then $\left(\frac{a}{b}\right)^{s}=\alpha$, so $a^{s}=\alpha b^{s}$. Note that $a^{s}+b^{s}=1 \Leftrightarrow a^{s}+b^{s}=(\alpha+1) b^{s}=1 \Leftrightarrow b^{s}=q$. Thus we only need to show that $b^{s}=q$. Since $\left(a^{p} b^{q}\right)^{s}=p^{p} q^{q}, p^{p} q^{q}=\left(a^{s}\right)^{p}\left(b^{s}\right)^{q}=\left(\alpha b^{s}\right)^{p}\left(b^{s}\right)^{q}$ $=\alpha^{p} b^{s}$. Hence $\left(\frac{p}{q}\right)^{p} b^{s}=p^{p} q^{q}$, i.e., $b^{s}=q$. Therefore $p=a^{s}$.
Note 8. Let C be a Cantor type set. It seems to be more convenient for a numerical method to use $h(p)$ instead of the equation $a^{s}+b^{s}=1$ for finding the dimension of C.

Remark 9. Let C be a Cantor type set with its distribution sets $F(p)$'s and let $\mathcal{H}^{s}\left(\mathcal{P}^{s}\right)$ denote s-dimensional Hausdorff (packing) measure. Then it would be interesting to compare the values of $\mathcal{H}^{s}(F(p))$ and $\mathcal{P}^{s}(F(p))$ for $s=H D(F(p))=P D(F(p))$.

References

[1] C.D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. \& Math. Sci. 11(1988), 643-650.
[2] K.J. Falconer, Fractal Geometry (John Wiley \& Sons, 1990).
[3] H.H. Lee and I.S. Baek, A note on equivalent interval covering systems for packing dimension on R, J. Korean Math. Soc. 28(1991), 195-205.

