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DIMENSIONS OF A CANTOR TYPE SET AND
ITS DISTRIBUTION SETS

Hung Hwan Lee and In Soo Baek

C.D. Cutler[1] and we [3] showed how to obtain the Hausdorff dimen-
sions and packing dimensions of some subsets on R.

In this paper, using the strong law of large numbers with the above
method, we get the Hausdorff dimensions and packing dimensions of the
distribution sets which are dense in a Cantor type set. Further, we show
that the Hausdorff dimensions of the distribution sets can be represented
by a differentiable function of continuous parameter and that the max-
imum value of the dimension function is the Hausdorff dimension and
packing dimension of the Cantor type set.

We review a generalized expansion of a number in [0,1] ([1]). Let
0 < ap; < ayz < 1 for any integer n. The initial proportions a;;,a;
determine a division of [0,1] into three disjoint intervals [0, a; 1), [a1,1,a1.2)
and [a;2,1]. We will indicate that a point z € [0,1] falls into the ith
interval (: = 0,1,2) by I;(z) = i. Next each interval {z : I1(z) = ¢}
is divided into three disjoint subintervals determined by the proportions
dy1,az2. This splits [0, 1] into 3% disjoint intervals ; {z : I;(z) =1, I(z) =
7} (4,7 = 0,1,2). Each interval {z : I,(z) = i,I;(z) = j} is then divided
according to the proportions a3, az ;. Continuing these processes, we have
a generalized expansion ¢(#y,12,**,%y,, ) determined by n-cylinder

C(il,ig," ',i“) — {I 5 Il(l') = i],]g(l‘) S iz," ',In(l') = ln}
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Definition 1. Let a,; = @ and 1 — a,2 = b for each n. A Cantor type
set C is defined as

C={ze€l0,1]:z=c(ir,is,--+) ¢; € {0,2},7=1,2,---}.
If a = b, we call C' a symmetric Cantor set, otherwise a skew symmetric
Cantor set [3].

Definition 2. Let no(z|k) denote the number of times the digit 0 occurs
in the first k& places of the generalized expansion ¢(iy,1;,---) of z. For
p € [0,1] we define F(p) = {z € C : limjaco -"-‘3—(?51 = p}. We call F(p) a
distribution set of C containing the digit 0 in proportion p.

Note that F(p) is dense in C for each p and
C 2 Uogp1 F(p).-

Let HD(E) and PD(E) denote the Hausdorff dimension of E and
the packing dimension of E, respectively. The following proposition is
well-known.

Proposition 3 ([2]). The Cantor type set C is the invariant set with open
set condition for the similarities Si(z) = az and Sy(z) = bz + (1 — b).
Hence HD(C) = PD(C) = s, where

@ 48 =1.

Proposition 4. If we define

[ prlR(1 — p)k-nelel®) if i € {0,2} for j =1,2,---,k
Helinyinyeoie)) = { 0 otherwise

, where = € ¢(11,12, -+ ,1x), then v extends uniquely a probability measure
on the Borel sets of [0,1]. Further if

e Jogy(er(z))
Bclee 0l b o ety = &

with v(E) > 0, then HD(E) = PD(E) = 0. (Here, ci(z) denotes the

k-cylinder containing z)

Proof. 1t is immediate from Theorem 3.2 [1] and Corollary 4.4 (3].
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Now we are ready to get the Hausdorff and packing dimension for
a distribution set F(p). Note that we adopt the usual convention that
0 x log 0 = 0.

. -y O - 0| =
Tl;e;)rem 5. HD(F(p)) = PD(F(p)) = Pt2t(oplotlon)  where 0 <
Ps 1.

Proof. 1If
z€C={ze[0,1]: 2 =cli,iz,--) % €{0,2},5 =1,2,---},
then
v(ck(z)) = p™ER(1 — p)k-mo(=lk)

and
d(cx(z)) = am k) pE—molzlk)

Thus, for z € F(p) C C
lim 087(e(®)) . no(z|k) logp + [k — no(z|k)] log(1 — p)
k—oo log d(cx(z)) k—oo  ng(z|k)loga+ [k — no(z|k)] log b

plogp+ (1 — p)log(1 — p)
ploga+ (1 —p)logh

By the strong law of large numbers, y(F(p)) = 1.

Let h(p) be the dimension function for a distribution set F(p).
Then HD(F(p)) = PD(F(p)) = h(p) is a differentiable function of p.

We will show that there exists a proper subset F(3) of C' which have
the same dimension of C.

Theorem 6. Let C be a symmetric Cantor set. Then

M) = HD(F(3)) = PD(F(3)
= HD(C) = PD(C).

Proof. By Proposition 3, HD(C') = PD(C) = "—l“L But, it follows from

Theorem 5 that HD(F(3)) = PD(F(3)) = leﬁa— a.lso.

Since h(3) is equal to HD(C') = PD(C) for a symmetric Cantor set
C, it is natural to ask the following question: does there exist py € [0,1]
such that h(po) = HD(C) = PC(C) for a skew symmetric Cantor set C?
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The following theorem gives a positive answer for the above question.

Theorem 7. Let C be a skew symmetric Cantor set C. Then there exists
po € [0,1] such that

h(po) = HD(F(po)) = PD(F(po)) = HD(C) = PD(C),
and h(po) = maxo<p<1 h(p). Moreover, po = a’, where a® + b = 1.

Proof. Plainly there exists po € [0, 1] such that A(po) = maxo<p<1 2(p) and

k' (po) =
Now, suppose h’(p) = 0. Then log£loga?b? = logp”q?log }, where

g =1—p. Noting § # 1 and a?V” # 1, we have r.i‘ﬁ%; = %1 That j is,

log B 1°8f
h(p) = 1:.3-
s
Put L—:’%l = s and a = 2. Then (})° = a, so a® = ab’. Note that

a®+b=1&a+0 =(a+1)l* =1« b =q. Thus we only need
to show that b = ¢. Since (a?0?)* = pPq?, pPq? = (a*)?(b°)7 = (ab®)?(b*)?
= aPb’. Hence ( )Pb* = pP¢t, i.e., b* = q. Therefore p = a®.

Note 8. Let C' be a Cantor type set. It seems to be more convenient for

a numerical method to use h(p) instead of the equation a* + b = 1 for
finding the dimension of C.

Remark 9. Let C be a Cantor type set with its distribution sets F'(p)’s
and let H*(P*) denote s-dimensional Hausdorff (packing) measure. Then
it would be interesting to compare the values of H*(F(p)) and P*(F(p))
for s = HD(F(p)) = PD(F(p)).
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