L^{2}-KILLING p-FORMS ON A COMPLETE, NON-COMPACT RIEMANNIAN MANIFOLD WITHOUT BOUNDARY

Yang Jae Shin

1. Introduction

The results of the study of killing tensor fields on a compact Riemannian manifold without boundary had been listed in Yano's book [19]. In [23], non-existence of L^{2}-Killing vector fields on a complete Riemannian manifold without boundary was discussed.

The study of L^{2}-harmonic p-forms on a complete Riemannian manifold has been done in [6], [7] and [21].

The purpose of the present paper is to investigate the properties and non-existence of L^{2}-killing p-forms on a complete, non-compact Riemannian manifold without boundary.

We shall be in C^{∞}-category. Latin indicies run from 1 to n. The Einstein summation convention will be used.

2. Preliminaries

Let M be an orientable Riemannian manifold of dimension n and g (resp. ∇) the Riemannian metric (resp. the Riemannian connection) on M.

We consider a p-form on M

$$
\begin{equation*}
\omega=\frac{1}{p!} \omega_{i_{1}, \cdots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} \tag{2.1}
\end{equation*}
$$

or a skew-symmetric tensor field of type $(0, p)$. Then $w_{i_{1} \ldots i_{p}}$ are local components of the p-form ω. The exterior differential $d \omega$ of a p-form ω on

[^0]M is a $(p+1)$-form given by
\[

$$
\begin{align*}
d \omega= & \frac{1}{(p+1)!}\left\{\nabla_{i} \omega_{i_{1}, \cdots i_{p}}-\nabla_{i_{1}} \omega_{i i_{2} \cdots i_{p}}-\cdots\right. \tag{2.2}\\
& \left.-\nabla_{\left.i_{p} \omega_{i_{1} \cdots i_{p-1}}\right\}}\right\} d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
\end{align*}
$$
\]

From a p-form ω on M, the ($p-1$)-form given by

$$
\begin{equation*}
\delta \omega=-\frac{1}{(p-1)!}\left(g^{j i} \nabla_{j} \omega_{i i_{2} \cdots i_{p}}\right) d x^{i_{2}} \wedge \cdots \wedge d x^{i_{p}} \tag{2.3}
\end{equation*}
$$

is called the codifferential of the p-form ω. If ω is a function on M, then we put $\delta \omega=0$. For any p-form ω on M, it is clear that

$$
\begin{equation*}
d(d \omega)=0 \quad \text { and } \quad \delta(\delta \omega)=0 \tag{2.4}
\end{equation*}
$$

The Laplace-Beltrami operator $\Delta=\delta d+d \delta$ is represented by

$$
\begin{align*}
\Delta \omega= & \delta d \omega+d \delta w \\
= & -\frac{1}{p!}\left\{g^{j i} \nabla_{j} \nabla_{i} \omega_{i_{1} \ldots i_{p}}-\sum_{s=1}^{p} K_{i_{s}}{ }^{t} \omega_{i_{1} \cdots t \cdots i_{p}}\right. \tag{2.5}\\
& \left.-\sum_{t<s}^{1 \cdots p} K_{i_{t} i_{s}}{ }^{a b} \omega_{i_{1} \ldots a \cdots b i_{p}}\right\} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
\end{align*}
$$

by the Ricci identity and $g^{j i} K_{j s i}{ }^{t}=-K_{s}{ }^{t}$ for any p-form ω, where $K_{k j i}{ }^{h}$ and $K_{j i}$ are local components of the Riemannian curvature tensor and Ricci tensor of M, respectively.

Let r be the scalar curvature of the Riemmanian manifold M, that is, $r=g^{j i} K_{j i}$. If the Riemannian manifold is of constant curvature, then we have

$$
\begin{equation*}
K_{k j i h}=\frac{1}{n(n-1)}\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right), \quad K_{j i}=\frac{r}{n} g_{j i} \tag{2.6}
\end{equation*}
$$

Let M be an n-dimensional Riemannian manifold with the fundamental metric g. The change of the metric $g^{*}=\rho^{2} g$, where ρ is a certain positive function, does not change the angle between two vectors at a point and so is called a conformal transformation of the metric.

Let C be the Weyl conformal curvature tensor of M with components $C_{k j i}{ }^{h}$. Then we have

$$
\begin{equation*}
C_{k j i}^{h}=K_{k j i}^{h}+\delta_{k}^{h} C_{j i}-\delta_{j}^{h} C_{k i}+C_{k}^{h} g_{j i}-C_{j}^{h} g_{k i}, \tag{2.7}
\end{equation*}
$$

where

$$
C_{j i}=-\frac{1}{n-2} K_{j i}+\frac{1}{2(n-1)(n-2)} r g_{j i}
$$

and

$$
C_{k}^{h}=C_{k i} g^{i h} .
$$

If a Riemannian metric g is conformally related to a Riemannian metric g^{*} which is locally flat, then the Riemannian manifold M with the metric g is said to be conformally flat. If a Riemannian manifold M is conformally flat, then $C=0$ for $\operatorname{dim} M>3$ (cf. [4], [15], [16]). Hence, for a conformally flat Riemannian manifold M of $\operatorname{dim} M>3$, we have

$$
\begin{align*}
K_{k j i h}= & \frac{1}{n-2}\left(g_{k h} K_{j i}-g_{j h} K_{k i}+g_{j i} K_{k h}-g_{k i} K_{j h}\right) \tag{2.8}\\
& -\frac{r}{(n-1)(n-2)}\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right) .
\end{align*}
$$

From now on we assume that M is a complete, non-compact, connected and orientable Riemannian manifold of dimension n without boundary unless special mention.

3. L^{2}-p-forms on M

In this section, we will introduce special Lipschitz continuous functions and study some properties of L^{2} - p-forms on M.

Let $\Lambda^{P}(M)$ be the space of all p-forms on M and $\Lambda_{o}^{P}(M)$ the subspace of $\Lambda^{P}(M)$ composed of forms with compact supports.

The Hodge $*$-operator on $\Lambda^{P}(M)$ is defined by (cf. [7],[8], [12],[13])

$$
\begin{align*}
* \omega= & \sum_{j_{1}<\cdots<j_{p} ; k_{1}<\cdots<k_{n-p}} g^{i_{1} j_{1}} \cdots g^{i_{p} j_{p}} \tag{3.1}\\
& \times \delta_{j_{1} \cdots j_{p} k_{1} \cdots k_{n-p}}^{11 \cdots \cdots} \sqrt{\operatorname{det}\left(g_{j i}\right)} \times \omega_{i_{1} \cdots i_{p}} d x^{k_{1}} \wedge \cdots \wedge d x^{k_{n-p}},
\end{align*}
$$

where $\omega=\frac{1}{p!} \omega_{i_{1} \cdots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$ and $\delta_{j_{1} \cdots j_{p} k_{1} \cdots k_{n-p}}^{1 \cdots \cdots \cdots n}$. denotes the Kronecker symbol. Thus we may define a global scalar product \ll, \gg on $\Lambda_{0}^{P}(M)$ by (cf. [5], [11], [12], [22])

$$
\begin{equation*}
\ll \phi, \psi \gg=\int_{M}<\phi, \psi>d V=\int_{M} \phi \wedge * \psi . \tag{3.2}
\end{equation*}
$$

Also, we have (cf. [6],[8],[24])

$$
\begin{equation*}
\ll d \phi, \psi \gg=\ll \phi, \delta \psi \gg \tag{3.3}
\end{equation*}
$$

for any $\phi \in \Lambda_{0}^{P}(M)$ and $\psi \in \Lambda_{0}^{P+1}(M)$.
Let x_{0} be a fixed point of M and $\rho(p)$ the distance from x_{0} to $p \in M$. Then the set

$$
\begin{equation*}
B(2 \alpha)=\{p \in M \mid \quad \rho(p) \leq 2 \alpha\} \tag{3.4}
\end{equation*}
$$

is compact in M for any $\alpha>0$.
On the other hand, if we consider a cut-off function μ on R satisfying (cf. [11],[20])

$$
\begin{cases}0 \leq \mu \leq 1 & \text { on } R \tag{3.5}\\ \mu(y)=1 & \text { for } y \leq 1 \\ \mu(y)=0 & \text { for } y \geq 2\end{cases}
$$

then we can define a family $\left\{\lambda_{\alpha}\right\}$ of Lipschitz continuous functions on M by (cf. [9], [20], [22])

$$
\begin{equation*}
\lambda_{\alpha}(p)=\mu(\rho(p) / \alpha), \quad \alpha=1,2,3 \cdots \tag{3.6}
\end{equation*}
$$

for any $p \in M$. Thus the family $\left\{\lambda_{\alpha}\right\}$ satisfies the following properties:

$$
\begin{cases}0 \leq \lambda_{\alpha}(p) \leq 1 & \text { for any } p \in M \tag{3.7}\\ \operatorname{supp} \lambda_{\alpha} \subset B(2 \alpha) & \\ \lambda_{\alpha}(p)=1 & \text { for any } p \in B(\alpha) \\ \lim _{\alpha \rightarrow \infty} \lambda_{\alpha}=1 & \\ \left|d \lambda_{\alpha}\right| \leq D \alpha^{-1} & \text { almost everywhere on } M\end{cases}
$$

where D is a positive constant independent on α (cf. [1],[3], [7],[8],[22],[23],[25]).
In fact, ρ is locally Lipschitz function and $|d \rho|^{2} \leq n$. Since $d \lambda_{\alpha}=$ $\frac{1}{\alpha}(d \mu / d t) d \rho$ at the point where the derivative of ρ exists (cf. [10]), setting $A:=\sup \left|\frac{d \mu}{d t}\right|$ implies (cf. [2], [8]).
Lemma 3.1. Under the above notations,

$$
\begin{equation*}
\left\|d \lambda_{\alpha} \wedge \omega\right\|_{B(2 \alpha)}^{2} \leq \frac{n A^{2}}{\alpha^{2}}\|\omega\|_{B(2 \alpha)}^{2} \tag{3.8}
\end{equation*}
$$

for any $\omega \in \Lambda_{0}^{P}(M)$, where A is a positive constant depending only on μ and $\|\omega\|_{B(2 \alpha)}^{2}=\ll w, w>_{B(2 \alpha)}=\int_{B(2 \alpha)}<\omega, \omega>* 1$.

Let $L_{P}^{2}(M)$ be the completion of $\Lambda_{0}^{P}(M)$ with respect to the global scalar product \ll, \gg. A tensor field $\omega \in L_{P}^{2}(M) \cap \Lambda^{P}(M)$ is called the L^{2} - p-form on M. Then we remark that $\|w\|<\infty, \lambda_{\alpha} \omega \in \Lambda_{0}^{P}(M)$ and $\lambda_{\alpha} \omega \rightarrow \omega$ as $\alpha \rightarrow \infty$ in the strong sense for any L^{2} - p-form ω on M (cf. [2], [9], [22]).

On the other hand, for any $L^{2}-p$-form ω on M, it is clear that (cf. [2], [9])
(3.9) $\left|\ll d \omega, 2 \lambda_{\alpha} d \lambda_{\alpha} \wedge \omega>_{B(2 \alpha)}\right| \leq \frac{n A^{2}}{\alpha^{2}}\left(\left\|\lambda_{\alpha} d \omega\right\|_{B(2 \alpha)}^{2}+\|\omega\|_{B(2 \alpha)}^{2}\right)$.

4. Non-existence of L^{2}-Killing p-forms on M

In this section, we will find useful properties of L^{2}-Killing p-form on M. From these properties, we will obtain our main result which is a natural extension of that of K. Yano ([18], [19]) in the case of compact Riemannian manifold. Furthermore, we will study relations between curvature (or Ricci) tensor and non-existence of L^{2}-Killing p-forms on M.

A p-form ω on M is a Killing p-form if it satisfies

$$
\begin{equation*}
(p+1) \nabla \omega=d \omega . \tag{4.1}
\end{equation*}
$$

For a Killing p-form ω, it is clear that $\nabla \omega$ is a skew-symmetric and $\delta \omega=0$.

We first introduce the following lemma due to T. Takahashi ([14]).
Lemma 4.1. A p-form ω on M is a Killing form if and only if

$$
\begin{equation*}
\Delta \omega=(p+1) \delta d \omega \quad \text { and } \quad \delta \omega=0 \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
g^{j i} \nabla_{j} \nabla_{i} \omega_{i_{1} \cdots i_{p}}+\frac{1}{p} \sum_{s=1}^{p} K_{i_{s}}{ }^{t} \omega_{i_{1} \ldots t \cdots i_{p}}+\frac{1}{p} \sum_{t<s}^{1 \cdots p} K_{i_{t} i_{s}}{ }^{a b} \omega_{i_{1} \ldots a \cdots b \cdots i_{p}}=0 \tag{4.3}
\end{equation*}
$$ and

$$
\begin{equation*}
g^{j i} \nabla_{j} \omega_{i i_{2} \cdots i_{p}}=0 . \tag{4.4}
\end{equation*}
$$

We consider (the square length) $\left|\lambda_{\alpha} \omega\right|^{2}$ of a L^{2} - p-form ω on M. Then we have

$$
\begin{equation*}
\frac{1}{2} \Delta\left|\lambda_{\alpha} \omega\right|^{2}=<\delta \nabla\left(\lambda_{\alpha} \omega\right), \lambda_{\alpha} \omega>-\left|\nabla\left(\lambda_{\alpha} \omega\right)\right|^{2} \tag{4.5}
\end{equation*}
$$

Suppose that ω is a L^{2}-Killing p-form, then we have

$$
\begin{align*}
(\delta \nabla \omega)_{i_{1} \cdots i_{p}}= & \frac{1}{p} \sum_{s=1}^{p} K_{i_{s}}^{t} \omega_{i_{1} \cdots t \cdots i_{p}} \tag{4.6}\\
& +\frac{1}{p} \sum_{t<s}^{1 \cdots p} K_{i_{t} i_{s}}{ }^{a b} \omega_{i_{1} \cdots a \cdots b \cdots i_{p}}
\end{align*}
$$

and consequently

$$
\begin{equation*}
<\delta \nabla \omega, \omega>=F_{p}(\omega, \omega) \tag{4.7}
\end{equation*}
$$

where the quadratic form $F_{p}(\omega, \omega)$ is given by

$$
\begin{align*}
F_{p}(\omega, \omega)= & K_{j i} \omega^{j}{ }_{i_{2} \cdots i_{p}} \omega^{i i_{2} \cdots i_{p}} \tag{4.8}\\
& +\frac{p-1}{2} K_{k j i h} \omega^{k j}{ }_{i_{3} \cdots i_{p}} \omega^{i h i_{3} \cdots i_{p}} .
\end{align*}
$$

Since $F_{p}(\omega, \omega)$ is bilinear, $\left\langle\lambda_{\alpha} \delta \nabla \omega, \lambda_{\alpha} \omega\right\rangle=F_{p}\left(\lambda_{\alpha} \omega, \lambda_{\alpha} \omega\right)$.
Thus we have
Lemma 4.2. If ω is a L^{2}-Killing p-form on M, then it holds that

$$
\begin{align*}
\frac{1}{2} \Delta\left|\lambda_{\alpha} \omega\right|^{2}= & F_{p}\left(\lambda_{\alpha} \omega, \lambda_{\alpha} \omega\right)-\lambda_{\alpha}^{2}|\nabla \omega|^{2}-\left|d \lambda_{\alpha} \wedge \omega\right|^{2} \tag{4.9}\\
& -2<\lambda_{\alpha} \nabla \omega, 2 d \lambda_{\alpha} \wedge \omega>+\left.\left\langle\delta d \lambda_{\alpha}, \lambda_{\alpha}\right| \omega\right|^{2}>
\end{align*}
$$

Using Stokes' theorem and Lemma 4.2, we have our main results:
Theorem 4.3. Let M be a complete, non-compact, connected and orientable Riemannian manifold of dimension n without boundary. If the quadratic form $F_{p}(\omega, \omega)$ is negative-semidefinite, then any L^{2}-Killing p form on M is parallel.
Proof. By Stokes' theorem, we have

$$
\begin{equation*}
\frac{1}{2} \int_{B(2 \alpha)} \Delta\left|\lambda_{\alpha} \omega\right|^{2} d V=-\frac{1}{2} \int_{\partial B(2 \alpha)}<N, d\left|\lambda_{\alpha} \omega\right|^{2}>d B \tag{4.10}
\end{equation*}
$$

where N is the outer normal vector to $\partial B(2 \alpha)$ and $d B$ is the volume element of $\partial B(2 \alpha)$.

Since $\partial B(2 \alpha)=\partial M \cup\{p \in M \mid \rho(p)=2 \alpha\}, \lambda_{\alpha}=1$ on ∂M and $\lambda_{\alpha}=0$ on $\{p \in M \mid \rho(p)=2 \alpha\}$ (cf. [2]). Moreover, since $\partial M=\phi$, the right hand side of (4.10) is equal to zero. Thus from Lemma 4.2, we have

$$
\begin{aligned}
0 \leq & \left.\left|\int_{B(2 \alpha)} F_{p}\left(\lambda_{\alpha} \omega, \lambda_{\alpha} \omega\right) d V-\int_{B(2 \alpha)} \lambda_{\alpha}^{2}\right| \nabla \omega\right|^{2} d V \mid \\
= & \left.\left|\int_{B(2 \alpha)}\right| d \lambda_{\alpha} \wedge \omega\right|^{2}+2 \int_{B(2 \alpha)}<\lambda_{\alpha} \nabla \omega, 2 d \lambda_{\alpha} \wedge \omega>d V \\
& -\int_{B(2 \alpha)}<\delta d \lambda_{\alpha}, \lambda_{\alpha}|\omega|^{2}>d V \mid \\
\leq & \left\|d \lambda_{\alpha} \wedge \omega\right\|_{B(2 \alpha)}^{2}+2 \ll \lambda_{\alpha} \nabla \omega, 2 d \lambda_{\alpha} \wedge \omega>_{B(2 \alpha)} \\
& +\ll d \lambda_{\alpha}, d\left(\lambda_{\alpha}|\omega|^{2}\right) \ggg B(2 \alpha) .
\end{aligned}
$$

Letting $\alpha \rightarrow \infty$, from Lemma 3.1 we have

$$
\int_{M} F_{p}(\omega, \omega) d V=\int_{M}|\nabla \omega|^{2} d V
$$

Hence if $F_{p}(\omega, \omega)$ is negative-semidefinite, then $\nabla \omega=0$.
Corollary 4.4. If the quadratic form $F_{p}(\omega, \omega)$ is negative-semidefinite on M and $F_{p}(\omega, \omega)<0$ for some point in M, then there are no non-zero L^{2}-Killing p-forms on M.

Now, we can find an example for our main results.
Example 4.5. We set $r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$ for any point (x, y, z) of R^{3} and

$$
x=r \cos \theta_{1} \quad y=r \sin \theta_{1} \cos \theta_{2} \quad z=r \sin \theta_{1} \sin \theta_{2},
$$

that is, $\left(\theta_{1}, \theta_{2}, r\right)$ is the spherical coordinates in R^{3}. For two positive constant numbers a_{1} and $a_{2}\left(a_{1}<a_{2}\right)$, we consider a metric $d s^{2}$ on R^{3} such that

$$
\begin{aligned}
& d s^{2}=r^{-\frac{2}{3}}\left\{\left(d \theta_{1}\right)^{2}+\sin ^{2} \theta_{1}\left(d \theta_{2}\right)^{2}\right\}+(d r)^{2} \quad \text { for } r \geq \frac{a_{1}+a_{2}}{2}, \\
& d s^{2}=r^{2}\left\{\left(d \theta_{1}\right)^{2}+\sin ^{2} \theta_{1}\left(d \theta_{2}\right)^{2}\right\}+(d r)^{2} \quad \text { for } r \leq a_{1} .
\end{aligned}
$$

Then $\mathcal{M}=\left(R^{3}, d s^{2}\right)$ is a complete, non-compact, connected and orientable Riemannian manifold. We set $M=\left\{\left(\theta_{1}, \theta_{2}, r\right) \in \mathcal{M} \mid r>a_{2}\right\}$, then M is a non-compact, connected and orientable Riemannian manifold without boundary.

Thus we have
(1) The volume of M is infinite.
(2) $\omega=\frac{2}{r} \sin \theta_{1} d \theta_{1} \wedge d \theta_{2}$ is a L^{2}-Killing 2 -form on M.
(3) $F_{2}(\omega, \omega)=-r^{-\frac{8}{3}} \rightarrow 0$ as $r \rightarrow \infty$.

Remark. For the case of $p=1$, we can take an example for our main results as in S. Yorozu ([23]).

From now on, we would like to investigate relations between curvature (or Ricci) tensors and non-existence of L^{2}-Killing p-forms on M.

Firstly, we consider that the Riemannian manifold M of dimension n is of constant curvature. Then from (2.6), we have

$$
\begin{equation*}
F_{p}(\omega, \omega)=\frac{n-p}{n(n-1)} r|\omega|^{2}, \tag{4.11}
\end{equation*}
$$

from which together with Corollary 4.4, we have
Proposition 4.6. Let M be as Theorem 4.3. If M is of negative constant curvature, then there are no non-zero L^{2}-Killing p-forms on $M(p=$ $1, \cdots, n-1)$.

Secondly, we assume that M is conformally flat Riemannian manifold of dimension $n>3$. Then from (2.8), we have

$$
\begin{equation*}
F_{p}(\omega, \omega)=\frac{n-2 p}{n-2} K_{j i} \omega^{j}{ }_{i_{2} \cdots i_{p}} \omega^{i i_{2} \cdots i_{p}}+\frac{p-1}{(n-1)(n-2)} r|\omega|^{2} . \tag{4.12}
\end{equation*}
$$

On the other hand, we assume that $R(v, v)$ is negative-definite and denote by $-L$ the largest (negative) eigenvalue of the matrix ($K_{j i}$). Then we have

$$
\begin{equation*}
R(v, v) \leq-L g(v, v), \quad r \leq-n L<0 \tag{4.13}
\end{equation*}
$$

which and (4.12) imply

$$
\begin{equation*}
F_{p}(\omega, \omega) \leq-\frac{n-p}{n-1} L|\omega|^{2} . \tag{4.14}
\end{equation*}
$$

Thus, form Corollary 4.4 we have
Proposition 4.7. Suppose that M is a complete, non-compact and connected conformally flat orientable Riemannian manifold of dimension $n>$ 3 without boundary. If the Ricci curvature of M is negative-semidefinite and the Ricci curvature is negative for some point, then there are no nonzero L^{2}-Killing p-forms on $M\left(p=1, \cdots,\left[\frac{n}{2}\right]\right)$.

Finally, we suppose that the curvature tensor $K_{k j i h}$ of M satisfies the inequalities

$$
\begin{equation*}
-b \leq-\frac{K_{k j i h} \omega^{k j} \omega^{i h}}{\omega_{j i} \omega^{j i}} \leq-\frac{1}{2} b<0 \tag{4.15}
\end{equation*}
$$

for a certain negative number $-b$ and for any skew-symmetric tensor field ω of type $(0,2)$.

Taking two mutually orthogonal unit vectors X and Y and putting

$$
\omega^{j i}=Y^{j} X^{i}-Y^{i} X^{j},
$$

we obtain

$$
\begin{equation*}
-\frac{1}{2} b \leq-K_{k j i h} Y^{k} X^{j} Y^{i} X^{h} \leq-\frac{1}{4} b<0 . \tag{4.16}
\end{equation*}
$$

Put $X_{1}=X$ and take $n-1$ unit vecotrs X_{2}, \cdots, X_{n} which are orthogonal to X_{1} and to each other. Then we have

$$
\sum_{s=1}^{n} X_{s}^{j} X_{s}^{i}=g^{j i}
$$

On the other hand, from (4.16) we have

$$
\begin{equation*}
-\frac{1}{2} b \leq-K_{k j i h} X_{s}^{k} X^{j} X_{s}^{i} X^{h} \leq-\frac{1}{4} b<0 . \tag{4.17}
\end{equation*}
$$

and consequently

$$
\left\{\begin{array}{l}
-\frac{n-1}{2} b \leq R(X, X) \leq-\frac{n-1}{4} b<0 \tag{4.18}\\
F_{p}(\omega, \omega) \leq-\frac{n-2 p+1}{4} b|\omega|^{2}
\end{array}\right.
$$

Hence, from Corollary 4.4 we have
Proposition 4.8. Let M be as Theorem 4.3. If the curvature tensor satisfies (4.15), then there are no non-zero L^{2}-Killing p-forms on $M(p=$ $\left.1, \cdots,\left[\frac{n}{2}\right]\right)$.

References

[1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst.Hautes Etudes Sci. Publ. Math. 25(1965), 313-362.
[2] T. Aoki, J. S. Pak and S. Yorozu, L^{2}-vector fields on a non-compact Riemannian manifold with boundary, Ann. Sci. Kanazawa Univ. Vol. 25(1988), 17-29.
[3] T. Aoki and S. Yorozu, L^{2}-transverse conformal and Killing fields on complete foliated Riemannian manifolds, Yokohama Math. J. 36 (1988), 27-41.
[4] B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific Publ. Co. 1984.
[5] J. Dodziuk, L^{2}-harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Amer. Math. Soc. 77(1979), 395-400.
[6] J. Dodziuk, L^{2}-harmonic forms on complete manifolds, Seminar on Differential Geometry, ed. S.T. Yau, Ann. of Math. Studies, No. 102 Princeton Univ. Press, Princeton, N.J. 1982.
[7] S.I. Goldberg, Curvature and Homology, Academic Press, New York, 1962.
[8] H. Kitahara, Remarks on square-integrable basic cohomology spaces on foliated manifold, Kodai Math. J. 2(1979), 187-193.
[9] H. Kitahara, Nonexistence of nontrivial Δ-harmonic 1-forms on a complete foliated Riemannian manifold, Trans. Amer. Math. Soc. 262(1980), 429-435.
[10] H. Kitahara and H. Matsuda, Non-existence of non-trivial harmonic forms on a complete Riemannian manifold with a boundary, Ann. Sci. Kanazawa Univ. Vol. 20(1983), 1-12.
[11] K. Okamoto and H. Ozeki, On square-integrable $\bar{\partial}$-cohomology spaces attached to hermitian symmetric space, Osaka J. Math. 4(1967), 95-110.
[12] B. L. Reinhart, Harmonic integrals on foliated manifolds, Amer. J. Math. 81(1959), 529-536.
[13] G. D. Rham, Differentiable manifolds, Springer-Verlag, Berlin-Heidelberg, 1984.
[14] T. Takahashi, On harmonic and Killing tensor fields in a Riemannian manifold with boundary, J. Math. Soc. Japan 14(1962), 37-65.
[15] H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 26(1918), 348-411.
[16] H. Weyl, Zur Infinitesimalgeometrie; Einordnung der projectiven und der konformen Auffasung, Göttingen Nachr, 1921, 99-112.
[17] H. Wu, The Bochner technique, Proc. of the 1980 Beijing Symp. On Differential Geometry and Differential Equations, Sci. Press. Beijing, China, 1982.
[18] K. Yano, Some remarks on tensor fields and curvature, Ann. of Math. 55(1952), 328-347.
[19] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, INC, New York, 1970.
[20] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geomerty, Indiana Univ. Math. J. 25(1976), 659-670.
[21] S. T. Yau, Problems section, Seminar on Differential Geometry, Ann. of Math. Studies, No. 102, Princeton Univ. Press, Princeton N.J. 1982.
[22] S. Yorozu, Notes on square-integrable cohomology spaces on certain foliated manifolds, Trans. Amer. Math. Soc. 255(1979), 329-341.
[23] S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc. 84(1982), 115-120.
[24] S. Yorozu, Killing vector fields on non-compact Riemannian manifolds with boundary, Kodai Math. J. 5(1982), 426-433.
[25] S. Yorozu, Conformal and Killing vector fields on complete non-compact Riemannian manifolds, Advanced Studies in Pure Math. 3, 459-472, NorthHolland/Kinokuniya, Amsterdam-New York-Oxford-Tokyo, 1984.

Department of Math. Education, Kyungnam University, Wolyong-Dong, Happo-ku, Masan 631-701, Korea.

[^0]: Received April 17, 1991.

