REGULAR EXTENDED TRIPLE SYSTEMS

Chung Je Cho

1. Introduction

An extended triple system of order v is a pair (V, B) where V is a vset and B is a collection of nonordered triples of elements in V (called
blocks), where each triple may have repeated elements, such that every
pair of elements of V, not necessarily distinct, belongs to exactly one
block. The blocks of B are of three types:

$$\{a, a, a\}, \{b, b, c\}, \{x, y, z\}$$

where the element a is called an idempotent and b a nonidempotent of the system. We will denote by E(v;n) an extended triple system of order v. which has n idempotents. It is straighforward to see that if there exists an E(v;n), then $n=0,1,\cdots$, or v. Johnson and Mendelsohn [3] obtained a necessary condition for the existence of an E(v;n), and Bennett and Mendelsohn [1] showed that this necessary condition was also sufficient.

Theorem 1.1 [1,3]. There exists an E(v;n) if and only if

- (i) $v \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$ or
- (ii) $v \equiv 1$ or $2 \pmod{3}$ and $n \equiv 1 \pmod{3}$ or
- (iii) v is even and $n \leq v/2$ or
- (iv) n = v 1 and v = 2.

An automorphism of an E(v; n) (V, B) is a permutation of V which fixes B setwise, i.e. $\alpha(B) = B$ where $\alpha(X) = {\alpha(x)|x \in X}$.

Let α be a permutation of degree v and type $[\alpha] = [\alpha_1, \alpha_2, \dots, \alpha_v]$, i.e. the disjoint cycle decomposition of α consists of α_i cycles of length i and

Received July 10, 1991.

This research is supported by a grant from the Korea Science and Engineering Foundation Grant 1990-1991.

 $\sum i\alpha_i = v$. An E(v;n) admitting α as an automorphism will be denoted by $E_{\alpha}(v;n)$. If $[\alpha] = [0,0,\cdots,0,1]$, then $E_{\alpha}(v;n)$ is called *cyclic*. If $[\alpha] = [1,0,\cdots,k,0,\cdots,0]$, i.e. $\alpha_1 = 1$, $\alpha_{(v-1)/k} = k$ and $\alpha_i = 0$ otherwise, then an $E_{\alpha}(v;n)$ is called *k-rotational*. If $[\alpha] = [0,0,\cdots,0,k,0,\cdots,0]$, i.e. $\alpha_{v/k} = k$ and $\alpha_i = 0$ otherwise, then an $E_{\alpha}(v;n)$ is called *k-regular*.

Theorem 1.2 [see 2]. There exists a cyclic E(v;n) if and only if

- (i) n = v and $v \equiv 1$ or $3 \pmod{6}$, $v \neq 9$ or
- (ii) n = 0 and $v \equiv 3 \pmod{6}$.

Theorem 1.3 [2]. (1) There exists a 1-rotational E(v;n) if and only if

- (i) n = v and $v \equiv 3$ or $9 \pmod{24}$ or
- (ii) n = 1 and $v \equiv 1$ or $2 \pmod{3}, v \neq 10$.
- (2) There exists a 2-rotational E(v;n) if and only if
 - (i) $n = v \text{ and } v \equiv 1, 3, 7, 9, 15 \text{ or } 19 \pmod{24} \text{ or }$
 - (ii) n = (v+1)/2 and $v \equiv 1 \pmod{6}$ or
 - (iii) n = 1 and $v \equiv 1$ or $5 \pmod{6}$.
- (3) A necessary and sufficient condition for the existence of a 3-rotational E(v;n) is
 - (i) n = v and $v \equiv 1$ or 19 (mod 24) or
 - (ii) n = 1 and $v \equiv 1 \pmod{3}$ or
- (iii) n = (v+2)/3 or (2v+1)/3 and $v \equiv 1 \pmod{18}$, except possibly for $v \equiv 37$ or 55 $\pmod{72}$ and n = (v+2)/3 or (2v+1)/3.

A Steiner triple system of order v, denoted by STS(v), is a pair (V, B) where V is a v-set and B is a set of 3-subsets of V, called blocks, such that each 2-subset of V belongs to precisely one block. It is well-known that a STS(v) exists if and only if $v \equiv 1$ or $3 \pmod{6}$, Peltesohn [5] has shown that a cyclic STS(v) exists if and only if $v \equiv 1$ or $3 \pmod{6}$, $v \neq 9$; and then it is easily seen that a 3-regular STS(v) exists if and only if $v \equiv 3 \pmod{6}$.

An (A, k)-system (a (B, k)-system) is a set of ordered pairs $\{(a_r, b_r) | r = 1, 2, \dots, k\}$ such that $b_r - a_r = r$ for $r = 1, 2, \dots, k$, and $\bigcup_{r=1}^k \{a_r, b_r\} = \{1, 2, \dots, 2k\}$ (= $\{1, 2, \dots, 2k-1, 2k+1\}$). An (A, k)-system and a (B, k)-system are essentially the same as a Skolem k-sequence and a hooked Skolem k-sequence, respectively [4,6]. It is well-known that an (A, k)-system and a (B, k)-system exist if and only if $k \equiv 0$ or 1 (mod4) and $k \equiv 2$ or 3 (mod4), respectively [see 4,6,7].

In this paper, we obtain a necessary and sufficient condition for the

existence of k-regular E(v;n)'s with $k \leq 3$, and a necessary condition for the existence of 4-regular E(v;n)'s and also show that this necessary condition is sufficient, except possibly for $v \equiv 12$ or 20 (mod24) and n = v/2.

2. Regular Extended Triple Systems

If (V, B) is a regular E(v; n) with automorphism α , then B can be partitioned into disjoint orbits under α , i.e. an orbit of a block $\{a, b, c\}$ under α is the set of blocks $\{\alpha^i(a), \alpha^i(b), \alpha^i(c)\}$ where $0 \le i \le v$. Thus a collection of blocks taken from each orbit precisely once, called base blocks, represents the whole blocks B.

Throughout, we will assume that our k-regular E(v;n)'s are based on $V = Z_{v/k} \times Z_k$, where Z_m is the additive group of all integers modulo v with residue classes $\{0,1,\cdots m-1\}$, and the corresponding k-regular automorphism is $\alpha = (0_01_0\cdots(v/k-1)_0)\ (0_11_1\cdots(v/k-1)_1) \cdots (0_{k-1}1_{k-1}\cdots(v/k-1)_{k-1})$; here instead of (x,i) we write for brevity x_i unless other specified. By simple arguments, we have easily seen the following lemma.

Lemma 2.1. If there exists a k-regular E(v; n) with k > 1, then

- (i) v/k must be an odd integer, and
- (ii) n = t(v/k) for $t = 0, 1, \dots, or k$.

Since a cyclic E(v;n) is also considered as a 1-regular system, we start with k=2. By Lemma 2.1, if there exists a 2-regular E(v;n) then n=0,v/2 or v. But since v/2 is an integer, v must be even; so $n \le v/2$ by Theorem 1.1. Thus n=0 or v/2.

Lemma 2.2. If there exists a 2-regular E(v; n), then

- (i) n = 0 and $v \equiv 6 \pmod{12}$ or
- (ii) n = v/2 and $v \equiv 2$ or $6 \pmod{12}$.

Proof. (i) If n = 0, then $v \equiv 0 \pmod{3}$ by Theorem 1.1. But we know that v/2 is an odd integer and hence $v \equiv 6 \pmod{12}$.

(ii) If n = v/2 then $v/2 \equiv 0$ or 1 (mod3) by Theorem 1.1, and hence $v \equiv 0$ or 2 (mod6); so $v \equiv 2$ or 6 (mod12) since v/2 is odd.

Lemma 2.3. There exists a 2-regular E(18;0).

Proof. Base blocks: $B = B_1 \cup B_2$ where

$$B_1 : \{\{0_0, 0_0, 0_1\}, \{0_1, 0_1, 2_1\}, \{0_1, 1_1, 4_1\}\},\$$

$$B_2$$
: $\{\{0_0, r_0, (b_r)_1\} | r = 1, 2, 3, 4\}$

where $\{(a_r, b_r)|r=1, 2, 3, 4\}$ is an (A, 4)-system. Then (V, B) is a 2-regular E(18; 0).

Lemma 2.4. If $v \equiv 6 \pmod{12}$, then there exists a 2-regular E(v; 0).

Proof. The case v=18 has been treated in Lemma 2.3. Let v=12t+1 and $t \neq 1$. Base blocks: $B=B_1 \cup B_2 \cup B_3$ where

$$B_1 : \begin{cases} \{\{0_0, 0_0, 0_1\}, \{0_1, 0_1, (2t+1)_1\}\} & \text{if } t \equiv 0 \text{ or } 1 \pmod{4}; \\ \{\{0_0, 0_0, (6t+2)_1\}, \{0_1, 0_1, (2t+1)_1\}\} & \text{if } t \equiv 2 \text{ or } 3 \pmod{4}, \end{cases}$$

$$B_2 : \{\{0_0, r_0, (b_r)_1\} | r = 1, 2, \cdots, 3t+1\}$$

where $\{(a_r, b_r)|r = 1, 2, \dots 3t+1\}$ is an (A, 3t+1)-system or a (B, 3t+1)-system depending on whether $t \equiv 0, 1 \pmod{4}$ or $t \equiv 2, 3 \pmod{4}$. B_3 : a set of base blocks which form a cyclic STS(6t+3), except the base block $\{0_1, (2t+1)_1, (4t+2)_1\}$, based on $Z_{6t+3} \times \{1\}$. Then (V, B) is a 2-regular E(v; 0).

Thus, we have the following theorem.

Theorem 2.5. There exists a 2-regular E(v;n) if and only if $v \equiv 6 \pmod{12}$.

Lemma 2.6. If $v \equiv 2 \pmod{12}$, then there exists a 2-regular E(v; v/2). Proof. Let v = 12t + 2. Base blocks: $B = B_1 \cup B_2 \cup B_3$ where

$$B_1 : \begin{cases} \{\{0_0, 0_0, 0_0\}, \{0_1, 0_1, 0_0\}\} & \text{if } t \equiv 0 \text{ or } 3 \pmod{4}; \\ \{\{0_0, 0_0, 0_0\}, \{0_1, 0_1, (6t)_0\}\} & \text{if } t \equiv 1 \text{ or } 2 \pmod{4}, \end{cases}$$

 B_2 : a set of base blocks which form a cyclic STS(6t+1) based on $Z_{6t+1} \times \{0\}$,

$$B_3$$
: $\{\{0_1, r_1, (b_r)_0\} | r = 1, 2, \cdots, 3t\}$

where $\{(a_r, b_r)|r = 1, 2, \dots, 3t\}$ is an (A, 3t)-system or a (B, 3t)-system depending on whether $t \equiv 0, 3 \pmod{4}$ or $t \equiv 1, 2 \pmod{4}$. Then (V, B) is a 2-regular E(v; v/2).

Lemma 2.7. There exists a 2-regular E(18; 9).

Proof. Base blocks B consist of

$$\{0_0, 0_0, 0_0\}, \{0_0, 4_1, 4_1\}, \{0_0, 2_0, 8_0\}, \{0_0, 4_0, 0_1\}, \{0_1, 3_1, 6_1\}, \{0_1, 1_1, 2_0\}, \{0_1, 2_1, 8_0\}, \{0_1, 4_1, 7_0\}.$$

Then (V, B) is a 2-regular E(18; 9).

Lemma 2.8. If $v \equiv 6 \pmod{12}$, then there exists a 2-regular E(v; v/2).

Proof. The case v=18 is treated in Lemma 2.7. Let v=12t+6 and $t \neq 1$. Base blocks: $B=B_1 \cup B_2 \cup B_3$ where

$$B_1 \ : \ \left\{ \begin{array}{ll} \{\{0_0,0_0,0_0\},\{0_1,0_1,0_0\}\} & \text{if } t \equiv 0 \text{ or } 1 \text{ (mod 4)}; \\ \{\{0_0,0_0,0_0\},\{0_1,0_1,(6t+2)_0\}\} & \text{if } t \equiv 2 \text{ or } 3 \text{ (mod 4)}, \end{array} \right.$$

 B_2 : a set of base blocks which form a cyclic STS(6t+3) based on $Z_{6t+3} \times \{0\}$.

$$B_3$$
: $\{\{0_1, r_1, (b_r)_0\} | r = 1, 2, \cdots, 3t + 1\}$

where $\{(a_r, b_r)|r = 1, 2, \dots, 3t+1\}$ is an (A, 3t+1)-system or a (B, 3t+1)-system depending on whether $t \equiv 0, 1 \pmod{4}$ or $t \equiv 2, 3 \pmod{4}$. Then (V, B) is a 2-regular E(v; v/2).

Now, we have the following theorem.

Theorem 2.9. There exists a 2-regular E(v; v/2) if and only if $v \equiv 2$ or $6 \pmod{12}$.

By Lemma 2.1, we know that if there exists a 3-regular E(v;n), then n = 0, v/3, 2v/3 or v.

Lemma 2.10. If there exists a 3-regular E(v; n), then

- (i) n = 0 and $v \equiv 3 \pmod{6}$ or
- (ii) n = v/3 and $v \equiv 9 \pmod{18}$ or
- (iii) n = 2v/3 and $v \equiv 9 \pmod{18}$ or
- (iv) n = v and $v \equiv 3 \pmod{6}$.

Proof. (i) If n = 0, then $v \equiv 0 \pmod{3}$ by Lemma 2.1. But we know that v/3 is an odd integer and hence $v \equiv 3 \pmod{6}$.

- (ii) If n = v/3, then $v/3 = 0 \pmod{3}$ by Lemma 2.1; so $v \equiv 9 \pmod{18}$ since v/3 is odd.
- (iii) If n = 2v/3, then $2v/3 \equiv 0 \pmod{3}$ by Lemma 2.1; so $v \equiv 9 \pmod{18}$ because v/3 is odd.
- (iv) If n = v, then the existence of 3-regular E(v; v)'s is equivalent to the existence of 3-regular STS(v)'s; so $v \equiv 3 \pmod{6}$.

The following theorem is directly obtained from the spectrum for 3-regular STS's.

Theorem 2.11. There exists a 3-regular E(v; v) if and only if $v \equiv 3 \pmod{6}$.

Lemma 2.12. If $v \equiv 3 \pmod{6}$, then there exists a 3-regular E(v;0). Proof. If v = 9, then a 3-regular E(9;0) has base blocks

$$\{\{0_i, 0_i, 1_i\}, \{0_0, i_1, (2i)_2\} | i \in Z_3\}.$$

If $v \equiv 3 \pmod{6}$ and $v \neq 9$, let $V' = Z_v$ and let $\alpha' = (01 \cdots v - 1)$. Base blocks: $B' = B_1 \cup B_2$ where

 $B_1: \{\{0,0,v/3\}\},\$

 B_2 : a set of base blocks which form a cyclic STS(v), except the base block $\{0, v/3, 2v/3\}$, based on V'. Then (V', B') is a 3-regular E(v; 0) with $(\alpha')^3$ as a reguired automorphism.

Thus, we the following theorem.

Theorem 2.13. There exists a 3-regular E(v;0) if and only if $v \equiv 3 \pmod{3}$.

Lemma 2.14. There exists a 3-regular E(27;9).

Proof. Base blocks: $B = B_1 \cup B_2 \cup B_3$ where

 $B_1: \{0_0, 0_0, 0_0\}, \{0_0, 3_0, 6_0\}, \{0_0, 3_1, 6_2\}, \{0_0, 6_1, 3_2\}\},\$

 $B_2 : \{0_i, 0_i, 3_i\} | i = 1, 2\},$

 $B_3 : \{\{0_i, 1_i, 2_{i+1}\}, \{0_i, 2_i, 7_{i+1}\}, \{0_i, 4_i, 8_{i+1}\} | i \in Z_3\}.$

Then (V, B) is a 3-regular E(27; 9).

Lemma 2.15. If $v \equiv 9 \pmod{18}$, then there exists a 3-regular E(v; v/3). Proof. The case v = 27 is handled in Lemma 2.14, and let v = 18t + 9 and $t \neq 1$. Base blocks: $B = B_1 \cup B_2 \cup B_3 \cup B_4$ where

 $B_1: \{\{0_0,0_0,0_0\},\{0_1,0_1,(2t+1)_1\},\{0_2,0_2,(2t+1)_2\}\},$

 B_2 : a set of base blocks which form a cyclic STS(6t+3) based on $Z_{6t+3} \times \{0\}$,

 B_3 : a set of base blocks which form a cyclic STS(6t+3), except the base blocks $\{0_i, (2t+1)_i, (4t+2)_i\}$, based on $Z_{6t+3} \times \{i\}$ for i=1,2

 B_4 : $\{\{0_0, r_1, (2r)_2\} | r \in Z_{6t+3}\}$. Then (V, B) is a 3-regular E(v; v/3).

Now, we have

Theorem 2.16. There exists a 3-regular E(v; v/3) if and only if $v \equiv 9 \pmod{18}$.

Lemma 2.17. There exists a 3-regular E(27;18).

Proof. Base blocks: $B = B_1 \cup B_2 \cup B_3$ where

 $B_1: \{\{0_i, 0_i, 0_i\}, \{0_i, 3_i, 6_i\} | i = 0, 1\},\$

 $B_2: \{0_2, 0_2, 3_2\}, \{0_0, 3_1, 6_2\}, \{0_0, 6_1, 3_2\}\},\$

 $B_3: \{0_i, 1_i, 2_{i+1}\}, \{0_i, 2_i, 7_{i+1}\}, \{0_i, 4_i, 8_{i+1}\} | i \in \mathbb{Z}_3\}.$ Then (V, B) is a 3-regular E(27; 18).

Lemma 2.18. If $v \equiv 9 \pmod{18}$, then there exists a 3-regular E(v; 2v/3).

Proof. A 3-regular E(27;18) exists by Lemma 2.17, so let v=18t+9 and $t \neq 1$. Base blocks: $B=B_1 \cup B_2 \cup B_3 \cup B_4$ where

 $B_1: \{\{0_i, 0_i, 0_i\}, \{0_2, 0_2, (2t+1)_2\} | i=0, 1\},$

 $B_2: \{\{0_0, r_1, (2r)_2\} | r \in Z_{6y+3}\},\$

 B_3 : a set of base blocks which form a cyclic STS(6t+3) based on $Z_{6t+3} \times \{i\}$ for i=0,1

 B_4 : a set of base blocks which form a cyclic STS(6t+3), except the base block $\{0_2, (2t+1)_2, (4t+2)_2\}$, based on $Z_{6t+3} \times \{2\}$. Then (V, B) is a 3-regular.

Thus, we have

Theorem 2.19. There exists a 3-regular E(v; 2v/3) if and only if $v \equiv 9 \pmod{18}$.

Let us construct 4-regular E(v; n)'s. First of all, by Lemma 2.1, if there exists a 4-regular E(v; n) then v = 0, v/4 or v/2.

Lemma 2.20. If there exists a 4-regular E(v; n), then

- (i) n = 0 and $v \equiv 12 \pmod{24}$ or
- (ii) n = v/4 and $v \equiv 4$ or $12 \pmod{24}$ or
- (iii) n = v/2 and $v \equiv 12$ or $20 \pmod{24}$.

Proof. (i) If n = 0 then $v \equiv 0 \pmod{3}$ by Lemma 2.1; so $v \equiv 12 \pmod{24}$ since v/4 is odd.

(ii) If n = v/4 then $v/4 \equiv 0$ or 1 (mod 3), equivalently $v \equiv 0$ or 4 (mod 12); so $v \equiv 4$ or 12 (mod 24) since v/4 is odd.

(iii) If n = v/2 then $v/2 \equiv 0$ or 1 (mod 3); so $v \equiv 12$ or 20 (mod 24) since v/4 is odd.

Lemma 2.21. There exists a 4-regular E(36;0).

Proof. Base blocks: $B = B_1 \cup B_2 \cup B_3$ where

 $B_1: \{0_3, 0_3, 4_3\}, \{0_3, 2_3, 8_3\}, \{0_i, 0_i, 0_3\} | i = 0, 1, 2\},$

 $B_2: \{\{0_0, r_1, (2r)_2\} | r \in \mathbb{Z}_9\},\$

 $B_3: \{\{0_i, r_i, (b_r)_3 | i = 0, 1, 2; r = 1, 2, 3, 4\} \text{ where } \{(a_r, b_r) | r = 1, 2, 3, 4\}$ is an (A, 4)-system. Then (V, B) is a 4-regular E(36; 0).

Lemma 2.22. If $v \equiv 12 \pmod{24}$, then there exists a 4-regular E(v; 0).

Proof. The case v = 36 is treated in Lemma 2.21. Let v = 24t + 12 and $t \neq 1$. Base blocks: $B = B_1 \cup B_2 \cup B_3 \cup B_4$ where

$$B_1: \left\{ \begin{array}{ll} \{\{0_3,0_3,(2t+1)_3\},\{0_i,0_i,0_3\}|i=0,1,2\} & \text{if } t\equiv 0 \text{ or } 1 \pmod 4;\\ \{\{0_3,0_3,(2t+1)_3\},\{0_i,0_i,(6t+2)_3\}|i=0,1,2\} & \text{if } t\equiv 2 \text{ or } 3 \pmod 4, \end{array} \right.$$

 $B_2: \{\{0_i, r_i, (b_r)_3\} | i = 0, 1, 2; r = 1, 2, \dots, 3t + 1\}$ where $\{(a_r, b_r) | r = 1, 2, \dots, 3t + 1\}$ is an (A, 3t + 1)-system or a (B, 3t + 1)-system depending on whether $t \equiv 0, 1 \pmod{4}$ or $t \equiv 2, 3 \pmod{4}$.

 $B_3: \{\{0_0, r_1, (2r)_2\} | r \in Z_{6t+3}\},\$

 B_4 : a set of base blocks which form a cyclic STS(6t+3), except the base block $\{0_3, (2t+1)_3, (4t+2)_3\}$, based on $Z_{6t+3} \times \{3\}$. Then (V, B) is a 4-regular E(v; 0).

Thus, we have

Theorem 2.23. There exists a 4-regular E(v;0) if and only if $v \equiv 12 \pmod{24}$.

Lemma 2.24. There exists a 4-regular E(36; 9).

Proof. Base blocks: $B = B_1 \cup B_2 \cup B_3$ where

$$B_1 : \{\{0_0, 0_0, 0_0\}, \{0_0, 2_0, 8_0\}, \{0_0, 4_0, 4_3\}, \{0_3, 1_3, 2_0\}, \{0_3, 2_3, 8_0\}, \{0_3, 4_3, 7_0\}, \{0_3, 3_3, 6_3\}, \{0_3, 0_3, 4_0\}, \{0_1, 0_1, 0_3\}, \{0_2, 0_2, 0_3\}\},$$

 $B_2 : \{\{0_0, r_1, (2r)_2\} | r \in \mathbb{Z}_9\},\$

 B_3 : $\{\{0_i, r_i, (b_r)_3\} | i = 1, 2; r = 1, 2, 3, 4\}$

where $\{(a_r, b_r)|r=1, 2, 3, 4\}$ is an (A, 4)-system. Then (V, B) is a 4-regular E(36; 9).

Lemma 2.25. If $v \equiv 12 \pmod{24}$, then there exists a 4-regular E(v; v/4).

Proof. A 4-regular E(36; 9) exists by Lemma 2.24. Let v = 24t + 12 and $t \neq 1$. Base blocks: $B = B_1 \cup B_2 \cup B_3 \cup B_4$ where

$$B_1 : \begin{cases} \{\{0_0, 0_0, 0_0\}, \{0_1, 0_1, 0_3\}, \{0_2, 0_2, 0_3\}, \{0_3, 0_3, 0_0\}\} \\ \text{if } t \equiv 0 \text{ or } 1 \pmod{4}; \\ \{\{0_0, 0_0, 0_0\}, \{0_1, 0_1, (6t+2)_3\}, \{0_2, 0_2, (6t+2)_3\}, \{0_3, 0_3, (6t+2)_0\}\} \\ \text{if } t \equiv 2 \text{ or } 3 \pmod{4}, \end{cases}$$

 B_2 : a set of base blocks which form a cyclic STS(6t+3) based on $Z_{6t+3} \times \{0\}$,

 $B_3 : \{\{0_1, r_1, (2r)_2\} | r \in Z_{6t+3}\},$

 B_4 : $\{\{0_1, r_1, (b_r)_3\}, \{0_2, r_2, (b_r)_3\}, \{0_3, r_3, (b_r)_0\} | r = 1, 2, \cdots, 3t + 1\}\}$

where $\{(a_r, b_r)|r = 1, 2, \dots, 3t+1\}$ is an (A, 3t+1)-system or a (B, 3t+1)-system depending on whether $t \equiv 0, 1 \pmod{4}$ or $t \equiv 2, 3 \pmod{4}$. Then (V, B) is a 4-regular E(v; v/4).

Lemma 2.26. If $v \equiv 4 \pmod{24}$, then there exists a 4-regular E(v; v/4).

Proof. Let v = 24t + 4. Base blocks: $B = B_1 \cup B_2 \cup B_3 \cup B_4$ where

$$B_1 : \begin{cases} \{\{0_0, 0_0, 0_0\}, \{0_3 0_3 0_0\}, \{0_i, 0_i, 0_3\} | i = 1, 2\} \\ \text{if } t \equiv 0 \text{ or } 3 \pmod{4}; \\ \{\{0_0, 0_0, 0_0\}, \{0_3, 0_3, (6t)_0\}, \{0_i, 0_i, (6t)_3\} | i = 1, 2\} \\ \text{if } t \equiv 1 \text{ or } 2 \pmod{4}, \end{cases}$$

 B_2 : a set of base blocks which form a cyclic STS(6t+1) based on

 $Z_{6t+1}\times\{0\},\,$

 $B_3 : \{\{0_0, r_1, (2r)_2\} | r \in Z_{6t+1}\},\$

 B_4 : $\{\{0_3, r_3, (b_r)_0\}, \{0_i, r_i, (b_r)_3\} | i = 1, 2; r = 1, 2, \dots, 3t\}$

where $\{(a_r, b_r)|r=1, 2, \dots, 3t\}$ is an (A, 3t)-system or a (B, 3t)-system depending on whether $t \equiv 0, 3 \pmod{4}$ or $t \equiv 1, 2 \pmod{4}$. Then (V, B) is a 4-regular E(v; v/4).

Thus, we have

Theorem 2.27. There exists a 4-regular E(v; v/4) if and only if $v \equiv 4$ or 12 (mod 24).

In the existence problem for 4-regular E(v;n)'s, the following case remains open: If $v \equiv 12$ or $20 \pmod{24}$, does there exist a 4-regular E(v;v/2)?

References

- Bennett, F.E., Mendelsohn, N.S., On the existence of extended triple systems, Utilitas Math., 14(1978), 249-267.
- [2] Cho, C.J., Rotational extended triple systems, to appear.
- [3] Johnson, D.M., Mendelsohn, N.S., Extended triple systems, Aequationes Math., 3(1972), 291-298.
- [4] O'Keefe, E.S., Verification of a conjecture of Th. Skolem, Math. Scand., 9(1961), 80-82.
- [5] Peltesohn, R., Eine Lösung der beiden heffterschen Differenzenprobleme, Compositio Math., 6(1939), 251-257.
- [6] Rosa, A., Poznamka o cyklickych Steinerovych systemoch trojic, Math. Fyz. Cas., 16(1966), 285-290.
- [7] Skolem, Th., On certain distributions of integers in pairs with given differences, Math. Scand., 5(1957), 57-68.

DEPARTMENT OF MATHEMATICS, SOOKMYUNG WOMEN'S UNIVERSITY, SEOUL, 140-742, KOREA.