SOME COMMUTATIVITY THEOREMS OF NON-ASSOCIATIVE RINGS

R. D. Giri and R. R. Rakhunde

Firstly, we have generalized a result of Ashraf and Quadri of associative ring for non-associative ring. Secondly, a result of Foster that a Booleanlike ring is commutative, is generalized for non-associative ring.

1. Introduction

Asharf and Quadri [1], in their paper proved that an assocative ring R with unity satisfying $\left[x y-x^{m} y^{n}, x\right]=0$. For all $x, y \in R$ fixed integers $m>1, n>1$, is commutative. We generalize this result by choosing $m=n=2$ and R a non-associative ring with unity satisfying the condition $x y-x^{2} y^{2} \in Z(R)$ and show that such a ring turns commutative. By a non-associative ring, we mean a ring $(R,+, \circ)$ which need not satisfy the associative property with repect to o, i.e. (R, o) is closed but need not be associative.

Next in [3], Yaqub proved that an associative Boolean-like ring is commutative. By Boolean-like ring we mean a ring satisfying the condition $(x y)^{2}-x^{2} y-x y^{2}+x y=0$ and $2 x=0$ for all $x, y \in R$. We generalize Foster's result for non-associative ring by assuming the condition that $(x y)^{2}-x^{2} y-x y^{2}+x y \in Z(R)$, where $Z(R)$ denotes the centre of R.

2. We prove following theorems

Theorem 2.1. The semisimple non-associative ring with unity 1 satisfying the condition $x y-x^{2} y^{2} \in Z(R)$, is commutative.
Proof. By hypothesis, we have

$$
\begin{equation*}
x y-x^{2} y^{2} \in Z(R) \tag{1}
\end{equation*}
$$

Received November 6, 1990.
Revised May 27, 1991.

Replace x by $x+1$, to obtain

$$
\begin{equation*}
\left(y-y^{2}-2 x y^{2}\right) \in Z(R) \tag{2}
\end{equation*}
$$

Case I : If char $R=2$ then (2) gives,

$$
y-y^{2} \in Z(R)
$$

Replacing y by $x+y$, in the above equation, we obtain

$$
x y+y x \in Z(R) .
$$

Since char $R=2$, therefore $x y-y x \in Z(R)$. Now if $Z(R)=0$ or $Z(R)=R$ then R is essentially a commutative ring. Therefore suppose $0 \neq Z(R) \neq R$. In first instance we take R to be a simple ring. Consider the principal ideal $(x y-y x) R$, since $Z(R) \neq R$ and R is simple, so ($x y-$ $y x) R=0$. Now if R is division ring then $x y-y x=0$ i.e. R is commutative. If R is simple ring which is not a division ring then R is homomorphic to D_{2}, the complete matrix ring of 2×2 matrices over a division ring D which must satisfy the condition $x y-x^{2} y^{2} \in Z(R)$. In fact, if we choose $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ then this condition fails. Hence R is commutative, if we choose R to be simple. Now semisimple ring is subdirect sum of simple rings, each of which is shown to be commutative. Hence semisimple ring R is also commutative under the given hypothesis. Case II. Suppose char $R \neq 2$ then from (2),

$$
\begin{equation*}
\left(y-y^{2}-2 x y^{2}\right) z=z\left(y-y^{2}-2 x y^{2}\right) \quad \forall z \in R . \tag{3}
\end{equation*}
$$

Replace y by $y+1$, to obtain

$$
\begin{equation*}
\left[(y+1)-(y+1)^{2}-2 x(y+1)^{2}\right] z=z\left[(y+1)-(y+1)^{2}-2 x(y+1)^{2}\right] \tag{4}
\end{equation*}
$$

Simplifying (4) and using (3), we obtain

$$
\begin{equation*}
2 y z+4(x y) z+2 x z=2 z y+4 z(x y)+2 z x \tag{5}
\end{equation*}
$$

As char $R \neq 2$ and R is semisimple,

$$
\begin{equation*}
y z+2(x y) z+x z=z y+2 z(x y)+z x \tag{6}
\end{equation*}
$$

Replacing x by $x+1$ in (6) and using (6), we obtain

$$
\begin{aligned}
2 y z & =2 z y \\
2(y z-z y) & =0
\end{aligned}
$$

As char $R \neq 2$, we get

$$
y z=z y .
$$

Thus R is commutative.
Theorem 2.2. If R is non-associative semi-simple ring with unity 1 satisfying the condition $(x y)^{2}-x^{2} y-x y^{2}+x y \in Z(R)$, then R is commutative.

Proof. By hypothesis

$$
\begin{equation*}
(x y)^{2}-x^{2} y-x y^{2}+x y \in Z(R) \tag{7}
\end{equation*}
$$

replace x by $x+1$ in (7), to obtain

$$
\begin{equation*}
[(x y) y+y(x y)-2 x y] \in Z(R) \tag{8}
\end{equation*}
$$

Suppose char $R=2$ then (8) gives

$$
(x y) y+y(x y) \in Z(R)
$$

since char $R=2$, we have

$$
\begin{equation*}
(x y) y-y(x y) \in Z(R) \tag{9}
\end{equation*}
$$

Replace y by $y+1$ in (9) and using (9) to get

$$
(x y-y x) \in Z(R) .
$$

Applying same arguments as in the theorem 2.1, we find that R is commutative. If char $R \neq 2$, then replacing x by $x+1$ in (8) and using (8), we obtain

$$
2\left(y^{2}-y\right) \in Z(R)
$$

As char $R \neq 2$, we get

$$
\begin{gather*}
y^{2}-y \in Z(R) \\
\left(y^{2}-y\right) z=z\left(y^{2}-y\right) \quad \forall z \in R \tag{10}
\end{gather*}
$$

Now replace y by $y+1$ in (10), to obtain

$$
2 y z=2 z y
$$

i.e. $2(y z-z y)=0$

As char $R \neq 2$, we get

$$
y z=z y .
$$

Thus R is commutative.

References

[1] Mohd. Ashraf and Murtaza A. Quadri, On commutativity of associative rings, Bull. Aust. Math. Soc., Vol. 38 (1988), 267-271.
[2] Foster A.L., The Theory of Boolean like Rings, Trans. Amer. Math. Soc., Vol.59(1964), 166-187.
[3] Yaqub A., A Generalizations of certain rings of A.L. Foster, Canad. Math. Bull. Vol. 6, No. 1 (1963), 55-60.

Department of Mathematics, Nagpur University Campus, Nagpur-10 (M.S.), India.

