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ON PRODUCTS OF CONJUGATE EPr 

MATR1CES 

AR. Meenakshi and R. Indira 

In this paper we answer the question of when product of conjugate 
EPr (con-EPr) matrices is con-EPr. 

1. Introduction 

Throughout this paper we deal with complex square matric않. Any 
matrix A is said to he con-EP if R(A) = R(AT ) or equivalently N(A) = 
N(AT ) or equivalently AA+ = A주A and is said to be con-EPr if A is 
con-EP a끄d rk(A) = r , where R(A) , N(A) , Ã, AT and rk(A) denote the 
range space, null space, conjugate, transpose and rank of A respectively 
[3J. A+ denotes the Moore-Penrose inverse of A satisfying the following 
four eq uations 

(I)AXA=A, (2)XAX=X, (3) (AX)*=AX, (4) (XA)* =XA [2J. 

A‘ is the conjugate transpose of A. In general product of two con-EPr 
i 0 I . I 0 0 I 

matrices need not be con-EP.. For instance. I V I and I V V I are r ’ I 0 0 I _ .. - I 0 i 

con-EP1 matrices, but the product is not con-EP1 malrix. 

The purpose of this paper is to answer the question of when the product 
of con-EPr matrices is con-EPT) analogous to that of EPr matrices studied 
by Baskett and Katz [IJ. We shall make use of the following results on 
range space, rank and generalized inverse of a matrix. 

(1) R(A) = R(B) 섭 AA+ = BB+ 
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(2) R(A+) = R(A*) 
(3) rk(A) = rk(A+) = rk(AT

) = rk(A) 
(4) (A+)+ = A 

Results : 

Theorem 1. Let At and An(n > 1) be con-EPr matrices and let A = 
A1A2 • .• An. Then the following statements are equivalenl 

(i) A is con-EPr. 
(ii) R(At ) = R(An) and rk(A) = r 
(iii) R(Ai) = R(A~) and rk(A) = r 
(iv) A+ 엉 con-EPr. 

Proof (i) 양 (ii) : Since R(A) 드 R(At) and rk(A) = rk(At ). We get 
R(A) = R(A1) . Similarly, R(AT

) = R(A~). Now, 

A is con-EPr 수=} R(A) = R(AT ) and rk(A) = r 
(by definition of con-E Pr) 

(ii) 수=} (iii) : 

수추 R(At} = R(A~) & rk(A) = r 
t추 R(At} = R(An) & rk(A) = r 

( since An is con-EPr) 

R(A1 ) = R(An) <=추 AtAt = AnA! (by result (1)) 

수걱 AtAt = 파Xr 

Therefore, 

수=} At A1 = A! An(since At , An are con-EPr) 
응수 R(At) = R(컴) (by results (1) & (4)) 

느→ R(Ai) = R(A~) (by results (2)) . 

R(At) = R(An) and rk(A) = r 섭 R(Ai) = R(A~) and rk(A) = r 

(iv) <==> (i) : 

A+ is con-EPr <=추 R(A+) = R(A+f and rk(A+) = r 
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Hence the Theorem 

(by definition of con - EPT ) 

t추 R(A+) = R(Ã) and rk(A+) = r 
느추 R(AT) = R(A) and rk(A) = r 

(by results (2) and (3)) 

수=추 A is con-EPT. 
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Corollary 1. Let A aπd B be con-EPT matηces. Then AB is a coη-EPT 
malr;x 삽 rk(AB) = r and R(A) = R(B). 

Proof Proof follows from Theorem 1 fo r the product of two matrices A, B 

Remark 1. In the above corollary both the conditions that rk(AB ) = r 
and R (A) = R (B) are essential for a produd of two con-EPT matrices to 
be con-EPT. This can be seen in the following 

I 1 t I - z 1 I 
Example 1. Let A = I • 1, B = I ι I be con-EP1 matrices . 

i -1 I ’ I 1 i 
Here R(A) = R(B) , rk(AB) ￥ 1 and AB is not con-EP, 

i 0 I ’ I 
Example 2. Let A = I " ~ I and B = I I be con-EP, matrices. I 0 0 I _ .. - - I i i 

Here R(A) ￥ R(B) , rk(AB) = 1 and AB is not con-EP, 
Remark 2. In particular for A = B , Corollary 1 reduces to the following 

Corollary 2. Lel A be con-EPT. Then Ak is con-E PT 성 rk(Ak ) = r. 

Theorem 2. Lel rk(AB) = rk(B) = r, and rk(BA) = ,.k(A) = η . !J 
AB, B are con-EP" and A is con-EPT2’ 

then BA is con-EPT2 
Proof Since rk(BA) = rk(A) = r2 , it is enough to show that N(BA) = 
N(BA)T. N(A) 드 N(BA) and rk(BA) = rk(A) implies N(BA) = N(A). 
Similarly, N(AB) = N(B) . Now, 

N(BA) N(A) 

N(AT ) 

ç N(BT AT
) 

N((AB)T) 

N(AB) 

N(B) 

(Since A is con -EPT2) 

(Since AB is con-EPTt ) 

(Since N(AB) = N(B)) 
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N(BT) (Since B is con-EPr,) 

ç N(AT B T) = N((BAf). 

Further, rk(BA) = rk(BA)T implies N(BA) = N(BA)T. Hence the 
T heorem 

Lemma l. If A , B are con-EPr matrices and AB has mnk r , then BA 
has mnk r . 

Proof Tk(AB) = rk(B)- dim (N(A) n N(B*) l.). Since rk(AB) 
rk(B) = r , N(A) n N(B*) l. = O. 

N(A) n N(B*) l. = 0 =} N(A) n N(J3)i = 0 

(S ince B is con-EPr) 

=} N(A) • nN(B) =O 

Now, 

=} N( A")l. n N(B) = 0 

(Since A is con-EPr) 

Tk(BA) = ,'k( A) - dim(N( B ) n N(A*) l.) = T - 0 = T. 

Hence t he Lemma. 

Theorem 3. If A , B aπd AB are con-EPr mal!-ices, then BA is coπ-EPr . 

Proof Since A ,B are con-EPr matrices and rk(AB) = r , by Lemma 1, 
Tk (BA) = r. Now the result follows from Theorem 2, for T, = r2 = r 

RemaTk 3. For any two con-EPr matrices A and B , since AB, AB , A+ B , 
AB+ , A+ B+ , B+ A+ all have the same rank, the property of a matrix 
being con-EPr is preserved for its conjugate and Moore-Penrose inverse, by 
applying Corollary 1 for a pair of con-EPr matrices among A , B , A+ , B+ , 
A , B , A+ , B+ and using the result 2, we can deduce the following 

Corollary 3. Let A , B be con-EPr matrices. Then the follo wing state­
ments aπ eq'uivalent. 

(i) AB is con-EPr . 
(ii) AB is con-EPr. 
(iii) A+ B is con-EPr 
(iv) AB+ is con-EPr 
(v) A+ B+ is con-EPr 
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(vi) B+ A+ is con-EPr . 

Theorem 4. If A , B are con-EP, matπces， R(Ã) = R(B) then (AB)+ = 
B+A+. 

Proof Since A is con-EP, and R(A) = R(B) , we have R(A+) = R(B). 
That is, given x E Cn (the set of all n x 1 complex matrices) there 

exists a y E Cn such that Bx = A+y. Now, 

Bx = A+y =추 B+ A+ ABx = B+ A+ AA+ν = B+ A+y = B+Bx. 

Since B+ B is hermitian, it follows that B+ A+ AB is hermitian. Similarly, 
R(A+) = R(B) implies ABB+ A+ is hermitian. 

Further by result (1), A+ A = BB+. Hence, 
AB(B+ A+)AB = ABB+(BB+)B 

AB 

(B+ A+)AB(B+ A+) = B+(BB+)B8+ A+ 

= B+A+. 

Thus B + A+ satisfies the defining equations of the Moore-Penrose in 
verse, that is, (AB)+ = B+A+. Hence the Theorem. 

Remark 4. In tbe above Tbeorem, the condition that R(A) = R(B) is 
essential. 

Examp념 Let A = [ : : ] and B = [~ ~]. Here A and B 

con-EP1 mat rices, rk(AB) = 1, R(A) ￥ R(B) and (AB)+ 폼 B+A+. 

RemaTk 5 TFe converse of Themem 41 need not be t l R in general. For, 
i 0 I I 0 0 I 

Let A = 1 n ~ 1 and B = 1 ~ - 1. A and B are con-EP1 matrices, I 0 0 I -~ - - I 0 i 

such that (AB)+ = B+ A+ , but R(A) -1 R(B). 

Next to establish the validi ty o[ the converse o[ the Theorem 4, under 
certain condition, first let us prove a Lemma ‘ 

I E F I 
Lemma 2. Let A = 1 '"' ,, 1 be an n x n con-EPr matrix where E is I G H I 
an r X r matrix and if [EF] has rank r , then E is nonsingular. M01"eover 

1 E E J( T 1 
th ere is an (n - r) X r mat떠 J( such that A = I ;(E ;(ÊÌ{T I 
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I Ir 0 I 
Proof Since A i5 con-EP" I 0 Ö I is con샌l 

I Ir 0 I I E F I I E F I 
the product I '; ~ I I n u = n n I is a product of con-EPr 1001lGHII001 

1 E F 1 
matrices which h싫 rank r. Therefore by Lemma 1 the product I G H I 
[LO| |EO o o | = l G o l has rank T fHfe히n떼1 
K and an r X (n - r) matrix L such that G = KE, F = EL, and E is 
nonsingular. 

Therefore, 

A = I .~~ .~!. I - I I(E KEL I 

I Ir 0 I 
Now, set C = I .~/ T I and consider I -K In-r I 

CACT = r 1: , •
0 1 r .~~ .~!. 1 r ~ ~](T 1 

I -K In-r I I ]( E ]( EL I I 0 In-r I 

= [~ ~L][ ~ 찌 = [~ -E](~ + EL ] o 0 I I 0 In-r I I 0 0 

CACT is con-EPr. From N(A) = N(CACT) it follows that EL-EI(T = 
0, and 50 L = K T , completing the proof. 

Theorem 5. IJ A , B are con-EPr matrices, rk(쇄) = r and (A B)+ = 
B+ A+ , then R (A) = R(B). 

Proof Since A is con-EP" by Theorem 3 in [3] , there is a unitary matrix 
~... 1 D 0 I 

U such that , WAU = 1:; ~ I ‘ where D is r x r non5ingular matrix. I 0 0 l' 。

1 B, B, 1 
Set U*BU = 1 ‘ ‘ | I B3 B4 I 

UTABψ = UT AUU*BO = 

U*BAU = U*BOUT AU 

[g 8l[ ￡ 짧] = [맴1 댐2 ] 

[~ 뭔 [ ~l 영2 ] has rank r and thus 

= [& §;][8 8]=[E;E 8l 
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= [§; 8l[g 걷r ] 

I B1 Bz I , 1 B1 0 I 
has rank r . It follows that I --;.,' --;.,' I and I -;" ~ I have rank r , so tha.t I 0 0 I _ .. - I B3 0 I 
Bl is nonsingula.r. 

ByLe히m띠nma 
I B1 B1J(T I 

r . By u뻐s잉ing Penrose representa.tion for the genera.lized inverse [4J, we get 

l B;PB; B;PB;K· l 
(UiM)+ = | KB;PBr KB;PB;K· | 

where P = (B1B~ + B1 J(TRB~)-IBl(B~Bl + B~ J(" Jí Bd-1 

+TT I T T* n ,.-n+ Q QI(’ | UT B+U = (U*Bψ)+ = l - - | I J(Q J(QJ(" I 

Q = (J + J(T Rt1 B~' (J + J(" 1() -1 

L.- • . .. 7" • • " L I D- 1 0 I 
U*A+U = (U' AU)+ = I ~O ö I 

UT ABU = UTABψ(UT ABU)+UT ABψ 

= UTABψ(UT(ABj+ U)UT ABU( since U is uni tary) 

= UT ABU(UT B+ A+U)UT ABU (by hypothesis) 

UT ABU(UT B+U)(U‘ A+U)UT ABU (since U is unita.ry) . 

On simplifica.tion, we get, 

DB.QB. + DBz J(QBl = DB. 

* DB1 (J +B간BzR)QBl = DBl 

Since Bz = B.I(T ,QBl = (1 +J(TR)-I. Hence (I + J(TR) = (QBd-1 = 
1. Thus J(T R = 0 which implies J(* J( = 0 so that J( = 0 

I B, 0 I 
U*BU = I ‘ | 

I 0 0 I 

7" ••• IDOI •.•• r-. IDOI 
U' AU = 1 : : I * U' AU = I -: : I I 0 0 I . - .. - - I 0 0 I 
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Since D and Bl are r X r nonsingular matrices we have 

R(D) = R(B1 ) 각 R([~ ~])=R([~l~]) 

Hence the Theorem. 

Theorem 6 . Let A,B are con-EPr matrices, rk(AB) = r and (AB)+ = 
A+ B+ , then AB is con-EPr. 

Proof 

R(B) = R(BT
) (since B is con-EPr) 

=} R(B) = R(B*) 

= R(B‘ A") (since R(B" A") 드 R(B') 
and rk(AB)" = rk(AB) = r = 바(B*)) 

= R(AB)" = R(AB)+ (by result (2)) 

R( A + B+) (by hypothesis) 

ç R(A+) = R(A‘) = R(A) 
(by result (2) &A is con- EPr). 

=} R(B) = R(A) =} R(B) = R(A). 

Since rk(AB) = r and R(B) = R(A), by Corollary 1, AB is con-EPr. 
Hence the Theorem. 
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