ON PRODUCTS OF CONJUGATE $E P_{r}$ MATRICES

AR. Meenakshi and R. Indira

In this paper we answer the question of when product of conjugate $E P_{r}$ (con- $E P_{r}$) matrices is con- $E P_{r}$.

1. Introduction

Throughout this paper we deal with complex square matrices. Any matrix A is said to be con- $E P$ if $R(A)=R\left(A^{T}\right)$ or equivalently $N(A)=$ $N\left(A^{T}\right)$ or equivalently $A A^{+}=\overline{A^{+} A}$ and is said to be con- $E P_{r}$ if A is con- $E P$ and $r k(A)=r$, where $R(A), N(A), \bar{A}, A^{T}$ and $r k(A)$ denote the range space, null space, conjugate, transpose and rank of A respectively [3]. A^{+}denotes the Moore-Penrose inverse of A satisfying the following four equations:
(1) $A X A=A$,
(2) $X A X=X$,
(3) $(A X)^{*}=A X$,
(4) $(X A)^{*}=X A[2]$.
A^{*} is the conjugate transpose of A. In general product of two con- $E P_{r}$ matrices need not be con- $E P_{r}$. For instance, $\left[\begin{array}{ll}i & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & i\end{array}\right]$ are con- $E P_{1}$ matrices, but the product is not con- $E P_{1}$ matrix.

The purpose of this paper is to answer the question of when the product of con- $E P_{r}$ matrices is con- $E P_{r}$, analogous to that of $E P_{r}$ matrices studied by Baskett and Katz [1]. We shall make use of the following results on range space, rank and generalized inverse of a matrix.

$$
\text { (1) } R(A)=R(B) \Leftrightarrow A A^{+}=B B^{+}
$$

Received October 12, 1989.
A.M.S. (Subject classifications) Primary 15A57; Secondary 15A09;

Key words and phrases : conjugate $E P$ matrices, Generalized inverse of a matrix.
(2) $R\left(A^{+}\right)=R\left(A^{*}\right)$
(3) $r k(A)=r k\left(A^{+}\right)=r k\left(A^{T}\right)=r k(\bar{A})$
(4) $\left(A^{+}\right)^{+}=A$.

Results :

Theorem 1. Let A_{1} and $A_{n}(n>1)$ be con-EP matrices and let $A=$ $A_{1} A_{2} \cdots A_{n}$. Then the following statements are equivalent.
(i) A is con- $E P_{r}$.
(ii) $R\left(A_{1}\right)=R\left(A_{n}\right)$ and $r k(A)=r$
(iii) $R\left(A_{1}^{*}\right)=R\left(A_{n}^{*}\right)$ and $r k(A)=r$
(iv) A^{+}is con- $E P_{r}$.

Proof. (i) \Leftrightarrow (ii) : Since $R(A) \subseteq R\left(A_{1}\right)$ and $r k(A)=r k\left(A_{1}\right)$. We get $R(A)=R\left(A_{1}\right)$. Similarly, $R\left(A^{T}\right)=R\left(A_{n}^{T}\right)$. Now,

$$
\begin{aligned}
A \text { is con- } E P_{r} & \Longleftrightarrow R(A)=R\left(A^{T}\right) \text { and } r k(A)=r \\
& \left.\quad \text { (by definition of con- } E P_{r}\right) \\
& \Longleftrightarrow R\left(A_{1}\right)=R\left(A_{n}^{T}\right) \quad \& \quad r k(A)=r \\
& \Longleftrightarrow R\left(A_{1}\right)=R\left(A_{n}\right) \quad \& \quad r k(A)=r
\end{aligned}
$$

(since A_{n} is con- $E P_{r}$)
(ii) \Longleftrightarrow (iii) :

$$
\begin{aligned}
R\left(A_{1}\right)=R\left(A_{n}\right) & \Longleftrightarrow A_{1} A_{1}^{+}=A_{n} A_{n}^{+}(\text {by result }(1)) \\
& \Longleftrightarrow \overline{A_{1} A_{1}^{+}}=\overline{A_{n} A_{n}^{+}} \\
& \Longleftrightarrow A_{1}^{+} A_{1}=A_{n}^{+} A_{n}\left(\text { since } A_{1}, A_{n} \text { are con- } E P_{r}\right) \\
& \left.\Longleftrightarrow R\left(A_{1}^{+}\right)=R\left(A_{n}^{+}\right) \text {(by results }(1) \&(4)\right) \\
& \Longleftrightarrow R\left(A_{1}^{*}\right)=R\left(A_{n}^{*}\right)(\text { by results }(2)) .
\end{aligned}
$$

Therefore,

$$
R\left(A_{1}\right)=R\left(A_{n}\right) \text { and } r k(A)=r \Leftrightarrow R\left(A_{1}^{*}\right)=R\left(A_{n}^{*}\right) \text { and } r k(A)=r .
$$

(iv) \Longleftrightarrow (i) :

$$
A^{+} \text {is con- } E P_{r} \Longleftrightarrow R\left(A^{+}\right)=R\left(A^{+}\right)^{T} \text { and } r k\left(A^{+}\right)=r
$$

$$
\begin{aligned}
& \left.\quad \text { (by definition of con }-E P_{r}\right) \\
\Longleftrightarrow & R\left(A^{+}\right)=R(\bar{A}) \text { and } r k\left(A^{+}\right)=r \\
\Longleftrightarrow & R\left(A^{T}\right)=R(A) \text { and } r k(A)=r \\
& \quad \text { (by results (2) and (3)) } \\
\Longleftrightarrow & A \text { is con- } E P_{r} .
\end{aligned}
$$

Hence the Theorem.
Corollary 1. Let A and B be con- $E P_{r}$ matrices. Then $A B$ is a con- $E P_{r}$ matrix $\Leftrightarrow r k(A B)=r$ and $R(A)=R(B)$.
Proof. Proof follows from Theorem 1 for the product of two matrices A, B.

Remark 1. In the above corollary both the conditions that $r k(A B)=r$ and $R(A)=R(B)$ are essential for a product of two con- $E P_{r}$ matrices to be con- $E P_{r}$. This can be seen in the following:
Example 1. Let $A=\left[\begin{array}{cc}1 & i \\ i & -1\end{array}\right], B=\left[\begin{array}{cc}-i & 1 \\ 1 & i\end{array}\right]$ be con- $E P_{1}$ matrices. Here $R(A)=R(B), r k(A B) \neq 1$ and $A B$ is not con- $E P_{1}$.
Example 2. Let $A=\left[\begin{array}{cc}i & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}i & i \\ i & i\end{array}\right]$ be con- $E P_{1}$ matrices. Here $R(A) \neq R(B), r k(A B)=1$ and $A B$ is not con- $E P_{1}$.
Remark 2. In particular for $A=B$, Corollary 1 reduces to the following.
Corollary 2. Let A be con- $E P_{r}$. Then A^{k} is con- $E P_{r} \Leftrightarrow r k\left(A^{k}\right)=r$.
Theorem 2. Let $r k(A B)=r k(B)=r_{1}$ and $r k(B A)=r k(A)=r_{2}$. If $A B, B$ are con- $E P_{r_{1}}$ and A is con- $E P_{r_{2}}$, then $B A$ is con- $E P_{r_{2}}$.
Proof. Since $r k(B A)=r k(A)=r_{2}$, it is enough to show that $N(B A)=$ $N(B A)^{T} . N(A) \subseteq N(B A)$ and $r k(B A)=r k(A)$ implies $N(B A)=N(A)$. Similarly, $N(A B)=N(B)$. Now,

$$
\begin{aligned}
N(B A) & =N(A) \\
& =N\left(A^{T}\right) \quad\left(\text { Since } A \text { is con- } E P_{r_{2}}\right) \\
& \subseteq N\left(B^{T} A^{T}\right) \\
& =N\left((A B)^{T}\right) \\
& =N(A B) \quad\left(\text { Since } A B \text { is con- } E P_{r_{1}}\right) \\
& =N(B) \quad(\text { Since } N(A B)=N(B))
\end{aligned}
$$

$$
\begin{aligned}
& =N\left(B^{T}\right) \quad\left(\text { Since } B \text { is con- } E P_{r_{1}}\right) \\
& \subseteq N\left(A^{T} B^{T}\right)=N\left((B A)^{T}\right) .
\end{aligned}
$$

Further, $r k(B A)=r k(B A)^{T}$ implies $N(B A)=N(B A)^{T}$. Hence the Theorem.

Lemma 1. If A, B are con- $E P_{r}$ matrices and $A B$ has rank r, then $B A$ has rankr.
Proof. $r k(A B)=r k(B)-\operatorname{dim}\left(N(A) \cap N\left(B^{*}\right)^{\perp}\right)$. Since $r k(A B)=$ $r k(B)=r, N(A) \cap N\left(B^{*}\right)^{\perp}=0$.

$$
N(A) \cap N\left(B^{*}\right)^{\perp}=0 \Rightarrow N(A) \cap N(\bar{B})^{\perp}=0
$$

(Since B is con- $E P_{r}$)
$\Rightarrow \quad N(\bar{A})^{\perp} \cap N(B)=0$
$\Rightarrow N\left(A^{*}\right)^{\perp} \cap N(B)=0$
(Since A is con- $E P_{r}$)
Now,

$$
r k(B A)=r k(A)-\operatorname{dim}\left(N(B) \cap N\left(A^{*}\right)^{\perp}\right)=r-0=r .
$$

Hence the Lemma.
Theorem 3. If A, B and $A B$ are con- $E P_{r}$ matrices, then $B A$ is con- $E P_{r}$.

Proof. Since A, B are con- $E P_{r}$ matrices and $r k(A B)=r$, by Lemma 1, $r k(B A)=r$. Now the result follows from Theorem 2 , for $r_{1}=r_{2}=r$.

Remark 3. For any two con- $E P_{r}$ matrices A and B, since $A B, \overline{A B}, \overline{A^{+}} B$, $A \overline{B^{+}}, A^{+} B^{+}, B^{+} A^{+}$all have the same rank, the property of a matrix being con- $E P_{r}$ is preserved for its conjugate and Moore-Penrose inverse, by applying Corollary 1 for a pair of con- $E P_{r}$ matrices among A, B, A^{+}, B^{+}, $\bar{A}, \bar{B}, \overline{A^{+}}, \overline{B^{+}}$and using the result 2 , we can deduce the following.

Corollary 3. Let A, B be con- $E P_{r}$ matrices. Then the following statements are equivalent.
(i) $A B$ is con- $E P_{r}$.
(ii) $\overline{A B}$ is con- $E P_{r}$.
(iii) $\overline{A^{+}} B$ is con- $E P_{r}$.
(iv) $A \overline{B^{+}}$is con- $E P_{r}$.
(v) $A^{+} B^{+}$is con- $E P_{r}$.
(vi) $B^{+} A^{+}$is con- $E P_{r}$.

Theorem 4. If A, B are con- $E P_{r}$ matrices, $R(\bar{A})=R(B)$ then $(A B)^{+}=$ $B^{+} A^{+}$.
Proof. Since A is con- $E P_{r}$ and $R(\bar{A})=R(B)$, we have $R\left(A^{+}\right)=R(B)$.
That is, given $x \in C_{n}$ (the set of all $n \times 1$ complex matrices) there exists a $y \in C_{n}$ such that $B x=A^{+} y$. Now,

$$
B x=A^{+} y \Rightarrow B^{+} A^{+} A B x=B^{+} A^{+} A A^{+} y=B^{+} A^{+} y=B^{+} B x .
$$

Since $B^{+} B$ is hermitian, it follows that $B^{+} A^{+} A B$ is hermitian. Similarly, $R\left(A^{+}\right)=R(B)$ implies $A B B^{+} A^{+}$is hermitian.

Further by result (1), $A^{+} A=B B^{+}$. Hence,

$$
\begin{aligned}
A B\left(B^{+} A^{+}\right) A B & =A B B^{+}\left(B B^{+}\right) B \\
& =A B \\
\left(B^{+} A^{+}\right) A B\left(B^{+} A^{+}\right) & =B^{+}\left(B B^{+}\right) B B^{+} A^{+} \\
& =B^{+} A^{+} .
\end{aligned}
$$

Thus $B^{+} A^{+}$satisfies the defining equations of the Moore-Penrose inverse, that is, $(A B)^{+}=B^{+} A^{+}$. Hence the Theorem.
Remark 4. In the above Theorem, the condition that $R(\bar{A})=R(B)$ is essential.
Example 3. Let $A=\left[\begin{array}{ll}i & i \\ i & i\end{array}\right]$ and $B=\left[\begin{array}{ll}i & 0 \\ 0 & 0\end{array}\right]$. Here A and B are con- $E P_{1}$ matrices, $r k(A B)=1, R(\bar{A}) \neq R(B)$ and $(A B)^{+} \neq B^{+} A^{+}$.

Remark 5. The converse of Theorem 4, need not be true in general. For, Let $A=\left[\begin{array}{ll}i & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & i\end{array}\right] . A$ and B are con- $E P_{1}$ matrices, such that $(A B)^{+}=B^{+} A^{+}$, but $R(\bar{A}) \neq R(B)$.

Next to establish the validity of the converse of the Theorem 4, under certain condition, first let us prove a Lemma.
Lemma 2. Let $A=\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]$ be an $n \times n$ con- $E P_{r}$ matrix where E is an $r \times r$ matrix and if $[E F]$ has rank r, then E is nonsingular. Moreover there is an $(n-r) \times r$ matrix K such that $A=\left[\begin{array}{cc}E & E K^{T} \\ K E & K E K^{T}\end{array}\right]$.

Proof. Since A is con- $E P_{r},\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$ is con- $E P_{r}$ and $[E F]$ has rank r, the product $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]=\left[\begin{array}{cc}E & F \\ 0 & 0\end{array}\right]$ is a product of con- $E P_{r}$ matrices which has rank r. Therefore by Lemma 1 the product $\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]$ $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}E & 0 \\ G & 0\end{array}\right]$ has rank r. Hence there is an $(n-r) \times r$ matrix K and an $r \times(n-r)$ matrix L such that $G=K E, F=E L$, and E is nonsingular.

Therefore,

$$
A=\left[\begin{array}{cc}
E & E L \\
K E & K E L
\end{array}\right] .
$$

Now, set $C=\left[\begin{array}{cc}I_{r} & 0 \\ -K & I_{n-r}\end{array}\right]$ and consider

$$
\begin{aligned}
C A C^{T} & =\left[\begin{array}{cc}
I_{r} & 0 \\
-K & I_{n-r}
\end{array}\right]\left[\begin{array}{cc}
E & E L \\
K E & K E L
\end{array}\right]\left[\begin{array}{cc}
I_{r} & -K^{T} \\
0 & I_{n-r}
\end{array}\right] \\
& =\left[\begin{array}{cc}
E & E L \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I_{r} & -K^{T} \\
0 & I_{n-r}
\end{array}\right]=\left[\begin{array}{cc}
E & -E K^{T}+E L \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$C A C^{T}$ is con- $E P_{r}$. From $N(A)=N\left(C A C^{T}\right)$ it follows that $E L-E K^{T}=$ 0 , and so $L=K^{T}$, completing the proof.
Theorem 5. If A, B are con- $E P_{r}$ matrices, $r k(A B)=r$ and $(A B)^{+}=$ $B^{+} A^{+}$, then $R(\bar{A})=R(B)$.
Proof. Since A is con- $E P_{r}$, by Theorem 3 in [3], there is a unitary matrix U such that, $U^{T} A U=\left[\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right]$, where D is $r \times r$ nonsingular matrix. Set $U^{*} B \bar{U}=\left[\begin{array}{ll}B_{1} & B_{2} \\ B_{3} & B_{4}\end{array}\right]$.

$$
\begin{aligned}
U^{T} A B \bar{U}=U^{T} A U U^{*} B \bar{U} & =\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]=\left[\begin{array}{cc}
D B_{1} & D B_{2} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
D & 0 \\
0 & I_{n-r}
\end{array}\right]\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & 0
\end{array}\right] \text { has rank } r \text { and thus, } \\
U^{*} B A U=U^{*} B \bar{U} U^{T} A U & =\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
B_{1} D & 0 \\
B_{3} D & 0
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
B_{1} & 0 \\
B_{3} & 0
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & I_{n-r}
\end{array}\right]
$$

has rank r. It follows that $\left[\begin{array}{cc}B_{1} & B_{2} \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}B_{1} & 0 \\ B_{3} & 0\end{array}\right]$ have rank r, so that B_{1} is nonsingular.

By Lemma $2, U^{*} B \bar{U}=\left[\begin{array}{cc}B_{1} & B_{1} K^{T} \\ K B_{1} & K B_{1} K^{T}\end{array}\right]$, with $r k\left(U^{*} B \bar{U}\right)=r k\left(B_{1}\right)=$ r. By using Penrose representation for the generalized inverse [4], we get

$$
\left(U^{*} B \bar{U}\right)^{+}=\left[\begin{array}{cc}
B_{1}^{*} P B_{1}^{*} & B_{1}^{*} P B_{1}^{*} K^{*} \\
\bar{K} B_{1}^{*} P B_{1}^{*} & \bar{K} B_{1}^{*} P B_{1}^{*} K^{*}
\end{array}\right]
$$

where $P=\left(B_{1} B_{1}^{*}+B_{1} K^{T} \bar{K} B_{1}^{*}\right)^{-1} B_{1}\left(B_{1}^{*} B_{1}+B_{1}^{*} K^{*} K B_{1}\right)^{-1}$

$$
\begin{gathered}
U^{T} B^{+} U=\left(U^{*} B \bar{U}\right)^{+}=\left[\begin{array}{cc}
Q & Q K^{*} \\
\bar{K} Q & \bar{K} Q K^{*}
\end{array}\right] \text { where } \\
Q=\left(I+K^{T} \bar{K}\right)^{-1} B_{1}^{-1}\left(I+K^{*} K\right)^{-1} \\
U^{*} A^{+} \bar{U}=\left(U^{T} A U\right)^{+}=\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
U^{T} A B \bar{U} & =U^{T} A B \bar{U}\left(U^{T} A B \bar{U}\right)^{+} U^{T} A B \bar{U} \\
& =U^{T} A B \bar{U}\left(U^{T}(A B)^{+} \bar{U}\right) U^{T} A B \bar{U}(\text { since } U \text { is unitary) } \\
& =U^{T} A B \bar{U}\left(U^{T} B^{+} A^{+} \bar{U}\right) U^{T} A B \bar{U} \text { (by hypothesis) } \\
& =U^{T} A B \bar{U}\left(U^{T} B^{+} U\right)\left(U^{*} A^{+} \bar{U}\right) U^{T} A B \bar{U} \text { (since } U \text { is unitary) } .
\end{aligned}
$$

On simplification, we get,

$$
\begin{aligned}
D B_{1} Q B_{1}+D B_{2} \bar{K} Q B_{1} & =D B_{1} \\
\Rightarrow D B_{1}\left(I+B_{1}^{-1} B_{2} \bar{K}\right) Q B_{1} & =D B_{1} .
\end{aligned}
$$

Since $B_{2}=B_{1} K^{T}, Q B_{1}=\left(I+K^{T} \bar{K}\right)^{-1}$. Hence $\left(I+K^{T} \bar{K}\right)=\left(Q B_{1}\right)^{-1}=$ I. Thus $K^{T} \bar{K}=0$ which implies $K^{*} K=0$ so that $K=0$.

$$
\begin{gathered}
U^{*} B \bar{U}=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right] \\
U^{T} A U=\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] \Rightarrow U^{*} \bar{A} \bar{U}=\left[\begin{array}{cc}
\bar{D} & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

Since \bar{D} and B_{1} are $r \times r$ nonsingular matrices we have

$$
\begin{aligned}
R(\bar{D})=R\left(B_{1}\right) & \Rightarrow R\left(\left[\begin{array}{cc}
\bar{D} & 0 \\
0 & 0
\end{array}\right]\right)=R\left(\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right]\right) \\
& \Rightarrow R\left(U^{*} \bar{A} \bar{U}\right)=R\left(U^{*} B \bar{U}\right) \\
& \Rightarrow R(\bar{A})=R(B) .
\end{aligned}
$$

Hence the Theorem.
Theorem 6. Let A, B are con- $E P_{r}$ matrices, $r k(A B)=r$ and $(A B)^{+}=$ $A^{+} B^{+}$, then $A B$ is con- $E P_{r}$.
Proof.

$$
\begin{aligned}
R(B)= & R\left(B^{T}\right) \quad\left(\text { since } B \text { is con- } E P_{r}\right) \\
\Rightarrow R(\bar{B})= & R\left(B^{*}\right) \quad \\
= & R\left(B^{*} A^{*}\right) \quad\left(\text { since } R\left(B^{*} A^{*}\right) \subseteq R\left(B^{*}\right)\right. \\
& \left.\quad \text { and } r k(A B)^{*}=r k(A B)=r=r k\left(B^{*}\right)\right) \\
= & R(A B)^{*}=R(A B)^{+}(\text {by result }(2)) \\
= & R\left(A^{+} B^{+}\right)(\text {by hypothesis }) \\
\subseteq & R\left(A^{+}\right)=R\left(A^{*}\right)=R(\bar{A}) \\
& \quad\left(\text { by result }(2) \& A \text { is con- } E P_{r}\right) . \\
\Rightarrow R(\bar{B})= & R(\bar{A}) \Rightarrow R(B)=R(A) .
\end{aligned}
$$

Since $r k(A B)=r$ and $R(B)=R(A)$, by Corollary $1, A B$ is con- $E P_{r}$. Hence the Theorem.

References

[1] T. S. Baskett and I. J. Katz, Theorems on Products of $E P_{r}$ matrices, Linear Algebra Appl., 2(1969), 87-103.
[2] A. Ben Israel and T. N. E. Greville, Generalized inverses -Theory and Applications, Wiley, Interscience, New York, 1974.
[3] AR. Meenakshi and R. Indira, On conjugate EP matrices, (submitted).
[4] R. Penrose, On best approximate solutions of linear matrix equations, Proc. Cambridge Phil. Soc., 52(1956), 17-19.

