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ON PRODUCTS OF CONJUGATE EPF,
MATRICES

AR. Meenakshi and R. Indira

In this paper we answer the question of when product of conjugate
EP, (con-EP,) matrices is con-EP,.

1. Introduction

Throughout this paper we deal with complex square matrices. Any
matrix A is said to be con-EP if R(A) = R(AT) or equivalently N(A) =
N(AT) or equivalently AA* = A+ A and is said to be con-EP, if A is
con-EP and rk(A) = r, where R(A), N(A), A, AT and rk(A) denote the
range space, null space, conjugate, transpose and rank of A respectively
[3]. AT denotes the Moore-Penrose inverse of A satisfying the following
four equations:

(1) AXA= A, (2) XAX = X, (3) (AX)* = AX, (4) (XA)* = XA [2].

A* is the conjugate transpose of A. In general product of two con-EP,
matrices need not be con-EP,. For instance, [ S g } and [ g ? } are
con-E P; matrices, but the product is not con-F P; matrix.

The purpose of this paper is to answer the question of when the product
of con- E P, matrices is con-E P,, analogous to that of E P, matrices studied
by Baskett and Katz [1]. We shall make use of the following results on
range space, rank and generalized inverse of a matrix.

(1) R(A) = R(B) < AA* = BB*
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(2) R(AY) = R(4")
(3) rk(A) = rk(A*) = rk(AT) = rk(A)
(4) (AT = A

Results :

Theorem 1. Let A; and A,(n > 1) be con-EP, matrices and let A =
A1Ay--- A,. Then the following statements are equivalent.

(i) A is con-EP,.

(ii) R(A;) = R(A,) and rk(A) =

(ii) R(A}) = R(A%) and rk(A) =

(iv) AT is con-EP,.
Proof. (i) & (ii) : Since R(A) C R(A;) and rk(A) = rk(A;). We get
R(A) = R(A,). Similarly, R(AT) = R(AT). Now,

Ais con-EP, <= R(A)= R(AT) and rk(A) =r
(by definition of con-EP,)
< R(A)=R(AL) & rk(A)=
< R(A1))=R(4,) & rk(A)=
( since A, is con-EP,)

A AT = A, AT (by result (1))

AAT = AAF

AT A, = A} A, (since Ay, A, are con-EP,)
R(A}) = R(AY) (by results (1) & (4)

R(A7) = R(A}) (by results (2)).

IHIJIIII[

Therefore,
R(A;) = R(A,) and rk(A) =r & R(A}) = R(A}) and rk(A) = r.
(iv) <= (i) :

A% is con-EP, <= R(A")= R(AY)! and rk(A*) =r
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(by definition of con — EF;)

<= R(A") = R(A) and rk(A+) =y

<= R(AT) = R(A) and rk(A) =
(by results (2) and (3))

<= Ais con-EP,.

Hence the Theorem.

Corollary 1. Let A and B be con-E P, matrices. Then AB is a con-EP,
matriz < rk(AB) = r and R(A) = R(B).

Proof. Proof follows from Theorem 1 for the product of two matrices A, B.

Remark 1. In the above corollary both the conditions that rk(AB) = r
and R(A) = R(B) are essential for a product of two con-E P, matrices to
be con-EP,. This can be seen in the following:

-

Example 1. Let A = : 1 o BB = _12 : be con- EP; matrices.
Here R(A) = R(B), 7k(AB) # 1 and AB is not con-EP,.
Example 2. Let A = S g ] and B = z : be con-E P, matrices.

Here R(A) # R(B), rk(AB) =1 and AB is not con-EP,.

Remark 2. In particular for A = B, Corollary 1 reduces to the following.
Corollary 2. Let A be con-EP,. Then A* is con-EP, & rk(A*) =r.
Theorem 2. Let rk(AB) = rk(B) = r; and rk(BA) = rk(A) = r,. If
AB, B are con-EP,, and A is con-EP,,, then BA is con-EP,,.

Proof. Since rk(BA) = rk(A) = ry, it is enough to show that N(BA) =
N(BA)T. N(A) C N(BA) and rk(BA) = rk(A) implies N(BA) = N(A).
Similarly, N(AB) = N(B). Now,

N(BA) (4)
(AT) (Since A is con-EP,,)
(BTAT)

((AB)")
(4
(

IN

I
222222

B) (Since AB is con-EP,,)
B) (Since N(AB) = N(B))
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e N(BT) (Since B is con-EP;))
C N(ATBT)= N((BA)T).

Further, rk(BA) = rk(BA)T implies N(BA) = N(BA)T. Hence the
Theorem.

Lemma 1. If A, B are con-EP, matrices and AB has rank r, then BA
has rank r.

Proof. rk(AB) = rk(B)— dim (N(A) N N(B*)). Since rk(AB) =
rk(B) =r, N(A)n N(B*)* =0.

N(A)NN(B)* =0 = NANNB)*=0
(Since B is con-EPF;)

= NANN(B)=0

= NA)'NN(B)=0
(Since A is con-EF,)

Now,
rk(BA) = rk(A) —dim(N(B)NN(A") ) =r—0=r.

Hence the Lemma.

Theorem 3. If A, B and AB are con-E P, matrices, then BA is con-EP,.

Proof. Since A, B are con-E P, matrices and rk(AB) = r, by Lemma 1,
rk(BA) = r. Now the result follows from Theorem 2, for ry = r; = r.

Remark 3. For any two con-EP, matrices A and B, since AB, AB, A* B,
AB*, A*B*, BtA* all have the same rank, the property of a matrix
being con- F P, is preserved for its conjugate and Moore-Penrose inverse, by
applying Corollary 1 for a pair of con-E P, matrices among A, B, A*, BT,
A, B, A*, B* and using the result 2, we can deduce the following.

Corollary 3. Let A, B be con-EP, matrices. Then the following state-
ments are equivalent.

(1) AB is con-EP,.

(11) AB is con-EP,.

(iii) A* B is con-EP,.

(iv) ABY is con-EP,.

(v) AYB* is con-EP,.
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(vi) BYA* is con-EP,.

Theorem 4. If A, B are con-EP, matrices, R(A) = R(B) then (AB)* =

BYA*;

Proof. Since A is con-EP, and R(A) = R(B), we have R(A*) = R(B).
That is, given ¢ € C, (the set of all n x 1 complex matrices) there

exists a y € C, such that Bx = A*y. Now,

Bz = Aty = BYA*ABz = B'AYAA*y = BtAty = B Bz.

Since BT B is hermitian, it follows that Bt At AB is hermitian. Similarly,
R(A*) = R(B) implies ABB* At is hermitian.
Further by result (1), A*A = BB*. Hence,

AB(B*A*)AB = ABB*(BB')B
= AB

(B*AY)AB(B*A*) = BY(BB*)BB*A*
B*A*.

Thus BT A* satisfies the defining equations of the Moore-Penrose in-
verse, that is, (AB)t = Bt A*. Hence the Theorem.

Remark 4. In the above Theorem, the condition that R(A) = R(B) is
essential.

Example 3. Let A = : : and B = [8 g} Here A and B are
con-E P, matrices, rk(AB) = 1, R(A) # R(B) and (AB)T # Bt A*.

Remark 5. The converse of Theorem 4, need not be true in general. For,
Let A = [ :] g ] and B = [ g ? ] A and B are con-E P, matrices,

such that (AB)* = Bt A*, but R(A) # R(B).
Next to establish the validity of the converse of the Theorem 4, under
certain condition, first let us prove a Lemma.
E F : ;
Lemma 2. Let A = G H be an n X n con-EP, matrir where F 1s
an r X r matriz and if [EF| has rank r, then E is nonsingular. Moreover
E EKT ]

there is an (n —r) X r matriz K such that A = [ KE KEKT
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Proof. Since A is con-EP,, {; 0 is con-EP, and [E F] has rank r,
I. 0 E F| |E F|.
the product [ 0 0} [G H] = [ 0 0 ] is a product of con-EP,

matrices which has rank r. Therefore by Lemma 1 the product ‘(E;' fl ]
E 0

[ g g ] = [ Qo ] has rank r. Hence there is an (n — r) X r matrix
K and an r X (n — r) matrix L such that G = KE, F = EL, and E is

nonsingular.
Therefore,
A= E EL
| KE KEL |’
Now, set C' = I J d id
ysetC=| g p | and consider
T I, 0 E EL I, —KT
Lac” = [—K ! KE KEL 0 Lk
| E EL I, -KT| | E —EKT+EL
B 0 0 0 L, | |0 0

CACT is con-EP,. From N(A) = N(CACT) it follows that EL— EKT =
0, and so L = KT, completing the proof.

Theorem 5. If A, B are con-EP, matrices, rk(AB) = r and (AB)* =
B*A*, then R(A) = R(B).

Proof. Since A is con-EP,, by Theorem 3 in [3], there is a unitary matrix

U such that, UT AU = [ 103 g  shiare Bl or aundlagls mist
Set U*BU = [ g; gz ]
UTABU = UTAUU*BU = [10) g] [ g; gj ] = [ Df‘ sz ]
= [ 10) InO-r ] [ l;l Bgz -l has rank r and thus,

. e Tanr | By B2 ][ D 0] _[BiD 0
U*BAU = U*BUUTAU = [33 B || o o|=|BD 0
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_[B o]l[D o0
T B o0 I

has rank r. It follows that B and i 0 have rank r, so that
| 0 0 B; 0

B is nonsingular. )
wnr | Bt BiKT
By Lemma 2, U*BU = KB, KB,KT

r. By using Penrose representation for the generalized inverse [4], we get

], with rk(U*BU) = rk(B,) =

(U*Bﬁ)+=[ B;PB; B;PB;K* }

KB;PB; KB;PB;K*
where P = (B, B; + BiKTK B;)™'B,(B; B, + BfK*K B;)™"
T n+ - ™ v Q 91{*
U* B Y = (IFBUY = [ KQ KQK"] where
Q=U+KTK)"'B{'(I+ K*K)™"
" -1
U*A*D = (UTAUY* = [ S ] :
0 0
UTABU = UTABU(UTABU)*UTABU
UTABU(UT(AB)*U)UT ABU ( since U is unitary)
= UTABU(UTB*A*U)UT ABU (by hypothesis)
= UTABU(UTBTU)(U*ATU)UT ABU (since U is unitary) .

On simplification, we get,

DBIQBI-*-DBQ.R'QBI = DB;
= DB](I + BI_IBQI;’)QBI = DBI.

Since B; = B_lKT,QBl = (I+ KTK)™. Hence (I + KTK) = (QB,)"! =
I. Thus KTK = 0 which implies K*K = 0 so that K = 0.

e [ B0
oo 1]

D 0

L .
UAU—[0 0

]:;-U*AET:[D 0}.

0 0
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Since D and B, are r X r nonsingular matrices we have

w0y =rey = &([ 5 0 ])==(] 5 0])
= R(U*AU) = R(U"BU)

= R(A) = R(B).
Hence the Theorem.

Theorem 6. Let A, B are con-EP, matrices, rk(AB) = r and (AB)* =
At B*, then AB is con-EP,.

Proof.
R(B) = R(BT) (since Bis con-EP,)

= R(B) = R(B*)
— R(BA") (since R(B"A") C R(B")
and 7k(AB)* = rk(AB) = r = rk(B*))
= R(AB)" = R(AB)* (by result (2))
= R(ATB") (by hypothesis)
C R(A*) = R(A") = R(A)
(by result (2) &A is con-EF,).
= R(B) = R(A)= R(B)= R(A).

Since rk(AB) = r and R(B) = R(A), by Corollary 1, AB is con-EP,.
Hence the Theorem.
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