ON PRODUCTS OF CONJUGATE EP, MATRICES

AR. Meenakshi and R. Indira

In this paper we answer the question of when product of conjugate EP_r (con- EP_r) matrices is con- EP_r .

1. Introduction

Throughout this paper we deal with complex square matrices. Any matrix A is said to be con-EP if $R(A) = R(A^T)$ or equivalently $N(A) = N(A^T)$ or equivalently $AA^+ = \overline{A^+A}$ and is said to be con- EP_r if A is con-EP and rk(A) = r, where $R(A), N(A), \bar{A}, A^T$ and rk(A) denote the range space, null space, conjugate, transpose and rank of A respectively [3]. A^+ denotes the Moore-Penrose inverse of A satisfying the following four equations:

(1)
$$AXA = A$$
, (2) $XAX = X$, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$ [2].

 A^* is the conjugate transpose of A. In general product of two con- EP_r matrices need not be con- EP_r . For instance, $\begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & i \end{bmatrix}$ are con- EP_1 matrices, but the product is not con- EP_1 matrix.

The purpose of this paper is to answer the question of when the product of con- EP_r matrices is con- EP_r , analogous to that of EP_r matrices studied by Baskett and Katz [1]. We shall make use of the following results on range space, rank and generalized inverse of a matrix.

(1)
$$R(A) = R(B) \Leftrightarrow AA^{+} = BB^{+}$$

Received October 12, 1989.

A.M.S. (Subject classifications) Primary 15A57; Secondary 15A09;

Key words and phrases: conjugate EP matrices, Generalized inverse of a matrix.

(2)
$$R(A^+) = R(A^*)$$

(3) $rk(A) = rk(A^+) = rk(A^T) = rk(\bar{A})$
(4) $(A^+)^+ = A$.

Results:

Theorem 1. Let A_1 and $A_n(n > 1)$ be con- EP_r matrices and let $A = A_1A_2 \cdots A_n$. Then the following statements are equivalent.

- (i) A is con- EP_r .
- (ii) $R(A_1) = R(A_n)$ and rk(A) = r
- (iii) $R(A_1^*) = R(A_n^*)$ and rk(A) = r
- (iv) A^+ is con- EP_r .

Proof. (i) \Leftrightarrow (ii) : Since $R(A) \subseteq R(A_1)$ and $rk(A) = rk(A_1)$. We get $R(A) = R(A_1)$. Similarly, $R(A^T) = R(A_n^T)$. Now,

A is con-
$$EP_r \iff R(A) = R(A^T)$$
 and $rk(A) = r$
(by definition of con- EP_r)
 $\iff R(A_1) = R(A_n^T) \& rk(A) = r$
 $\iff R(A_1) = R(A_n) \& rk(A) = r$
(since A_n is con- EP_r)

$$R(A_{1}) = R(A_{n}) \iff A_{1}A_{1}^{+} = A_{n}A_{n}^{+} \text{ (by result (1))}$$

$$\iff \overline{A_{1}A_{1}^{+}} = \overline{A_{n}A_{n}^{+}}$$

$$\iff A_{1}^{+}A_{1} = A_{n}^{+}A_{n} \text{ (since } A_{1}, A_{n} \text{ are con-} EP_{r})$$

$$\iff R(A_{1}^{+}) = R(A_{n}^{+}) \text{ (by results (1) & (4))}$$

$$\iff R(A_{1}^{*}) = R(A_{n}^{*}) \text{ (by results (2))}.$$

Therefore,

$$R(A_1) = R(A_n)$$
 and $rk(A) = r \Leftrightarrow R(A_1^*) = R(A_n^*)$ and $rk(A) = r$.
(iv) \iff (i):
 A^+ is con- $EP_r \iff R(A^+) = R(A^+)^T$ and $rk(A^+) = r$

(by definition of con
$$-EP_r$$
)
 $\iff R(A^+) = R(\bar{A}) \text{ and } rk(A^+) = r$
 $\iff R(A^T) = R(A) \text{ and } rk(A) = r$
(by results (2) and (3))
 $\iff A \text{ is con-}EP_r.$

Hence the Theorem.

Corollary 1. Let A and B be con-EP_r matrices. Then AB is a con-EP_r matrix $\Leftrightarrow rk(AB) = r$ and R(A) = R(B).

Proof. Proof follows from Theorem 1 for the product of two matrices A, B.

Remark 1. In the above corollary both the conditions that rk(AB) = r and R(A) = R(B) are essential for a product of two con- EP_r matrices to be con- EP_r . This can be seen in the following:

Example 1. Let $A = \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$, $B = \begin{bmatrix} -i & 1 \\ 1 & i \end{bmatrix}$ be con- EP_1 matrices. Here R(A) = R(B), $rk(AB) \neq 1$ and AB is not con- EP_1 .

Example 2. Let $A = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} i & i \\ i & i \end{bmatrix}$ be con- EP_1 matrices. Here $R(A) \neq R(B)$, rk(AB) = 1 and AB is not con- EP_1 .

Remark 2. In particular for A = B, Corollary 1 reduces to the following.

Corollary 2. Let A be con-EP_r. Then A^k is con-EP_r $\Leftrightarrow rk(A^k) = r$.

Theorem 2. Let $rk(AB) = rk(B) = r_1$ and $rk(BA) = rk(A) = r_2$. If AB, B are $con-EP_{r_1}$ and A is $con-EP_{r_2}$, then BA is $con-EP_{r_2}$.

Proof. Since $rk(BA) = rk(A) = r_2$, it is enough to show that $N(BA) = N(BA)^T$. $N(A) \subseteq N(BA)$ and rk(BA) = rk(A) implies N(BA) = N(A). Similarly, N(AB) = N(B). Now,

$$N(BA) = N(A)$$

$$= N(A^{T}) \quad \text{(Since } A \text{ is con-} EP_{r_{2}}\text{)}$$

$$\subseteq N(B^{T}A^{T})$$

$$= N((AB)^{T})$$

$$= N(AB) \quad \text{(Since } AB \text{ is con-} EP_{r_{1}}\text{)}$$

$$= N(B) \quad \text{(Since } N(AB) = N(B)\text{)}$$

=
$$N(B^T)$$
 (Since B is con- EP_{r_1})
 $\subseteq N(A^TB^T) = N((BA)^T)$.

Further, $rk(BA) = rk(BA)^T$ implies $N(BA) = N(BA)^T$. Hence the Theorem.

Lemma 1. If A, B are con- EP_{τ} matrices and AB has rank r, then BA has rank r.

Proof. $rk(AB) = rk(B) - \dim(N(A) \cap N(B^*)^{\perp})$. Since rk(AB) = rk(B) = r, $N(A) \cap N(B^*)^{\perp} = 0$.

$$N(A) \cap N(B^*)^{\perp} = 0 \implies N(A) \cap N(\bar{B})^{\perp} = 0$$

(Since B is con- EP_r)
 $\Rightarrow N(\bar{A})^{\perp} \cap N(B) = 0$
 $\Rightarrow N(A^*)^{\perp} \cap N(B) = 0$
(Since A is con- EP_r)

Now,

$$rk(BA) = rk(A) - \dim(N(B) \cap N(A^*)^{\perp}) = r - 0 = r.$$

Hence the Lemma.

Theorem 3. If A, B and AB are con- EP_r matrices, then BA is con- EP_r .

Proof. Since A, B are con- EP_r matrices and rk(AB) = r, by Lemma 1, rk(BA) = r. Now the result follows from Theorem 2, for $r_1 = r_2 = r$.

Corollary 3. Let A, B be con- EP_{τ} matrices. Then the following statements are equivalent.

- (i) AB is con- EP_r .
- (ii) \overline{AB} is con- EP_r .
- (iii) $\overline{A^+}B$ is con- EP_r .
- (iv) $A\overline{B^+}$ is con- EP_r .
- (v) A^+B^+ is con- EP_τ .

(vi) B^+A^+ is con- EP_r .

Theorem 4. If A, B are con- EP_r matrices, $R(\bar{A}) = R(B)$ then $(AB)^+ = B^+A^+$.

Proof. Since A is con- EP_r and $R(\bar{A}) = R(B)$, we have $R(A^+) = R(B)$.

That is, given $x \in C_n$ (the set of all $n \times 1$ complex matrices) there exists a $y \in C_n$ such that $Bx = A^+y$. Now,

$$Bx = A^{+}y \Rightarrow B^{+}A^{+}ABx = B^{+}A^{+}AA^{+}y = B^{+}A^{+}y = B^{+}Bx.$$

Since B^+B is hermitian, it follows that B^+A^+AB is hermitian. Similarly, $R(A^+) = R(B)$ implies ABB^+A^+ is hermitian.

Further by result (1), $A^+A = BB^+$. Hence,

$$AB(B^+A^+)AB = ABB^+(BB^+)B$$
$$= AB$$

$$(B^+A^+)AB(B^+A^+) = B^+(BB^+)BB^+A^+$$

= B^+A^+ .

Thus B^+A^+ satisfies the defining equations of the Moore-Penrose inverse, that is, $(AB)^+ = B^+A^+$. Hence the Theorem.

Remark 4. In the above Theorem, the condition that $R(\bar{A}) = R(B)$ is essential.

Example 3. Let $A = \begin{bmatrix} i & i \\ i & i \end{bmatrix}$ and $B = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}$. Here A and B are con- EP_1 matrices, rk(AB) = 1, $R(\bar{A}) \neq R(B)$ and $(AB)^+ \neq B^+A^+$.

Remark 5. The converse of Theorem 4, need not be true in general. For, Let $A = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & i \end{bmatrix}$. A and B are con- EP_1 matrices, such that $(AB)^+ = B^+A^+$, but $R(\bar{A}) \neq R(B)$.

Next to establish the validity of the converse of the Theorem 4, under certain condition, first let us prove a Lemma.

Lemma 2. Let $A = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$ be an $n \times n$ con- EP_r matrix where E is an $r \times r$ matrix and if [EF] has rank r, then E is nonsingular. Moreover there is an $(n-r) \times r$ matrix K such that $A = \begin{bmatrix} E & EK^T \\ KE & KEK^T \end{bmatrix}$.

Proof. Since A is con- EP_r , $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ is con- EP_r and $[E\ F]$ has rank r, the product $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} E & F \\ 0 & 0 \end{bmatrix}$ is a product of con- EP_r matrices which has rank r. Therefore by Lemma 1 the product $\begin{bmatrix} E & F \\ G & H \end{bmatrix}$ $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} E & 0 \\ G & 0 \end{bmatrix}$ has rank r. Hence there is an $(n-r) \times r$ matrix K and an $r \times (n-r)$ matrix L such that G = KE, F = EL, and E is nonsingular.

Therefore,

$$A = \left[\begin{array}{cc} E & EL \\ KE & KEL \end{array} \right].$$

Now, set $C = \begin{bmatrix} I_r & 0 \\ -K & I_{n-r} \end{bmatrix}$ and consider

$$CAC^{T} = \begin{bmatrix} I_{r} & 0 \\ -K & I_{n-r} \end{bmatrix} \begin{bmatrix} E & EL \\ KE & KEL \end{bmatrix} \begin{bmatrix} I_{r} & -K^{T} \\ 0 & I_{n-r} \end{bmatrix}$$
$$= \begin{bmatrix} E & EL \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{r} & -K^{T} \\ 0 & I_{n-r} \end{bmatrix} = \begin{bmatrix} E & -EK^{T} + EL \\ 0 & 0 \end{bmatrix}$$

 CAC^T is con- EP_r . From $N(A) = N(CAC^T)$ it follows that $EL - EK^T = 0$, and so $L = K^T$, completing the proof.

Theorem 5. If A, B are con- EP_r matrices, rk(AB) = r and $(AB)^+ = B^+A^+$, then $R(\bar{A}) = R(B)$.

Proof. Since A is con- EP_r , by Theorem 3 in [3], there is a unitary matrix U such that, $U^TAU = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$, where D is $r \times r$ nonsingular matrix.

Set
$$U^*B\bar{U} = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$$
.

$$\begin{split} U^T A B \bar{U} &= U^T A U U^* B \bar{U} &= \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} D B_1 & D B_2 \\ 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} D & 0 \\ 0 & I_{n-r} \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix} \text{ has rank } r \text{ and thus,} \end{split}$$

$$U^*BAU = U^*B\bar{U}U^TAU = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} B_1D & 0 \\ B_3D & 0 \end{bmatrix}$$

$$= \left[\begin{array}{cc} B_1 & 0 \\ B_3 & 0 \end{array}\right] \left[\begin{array}{cc} D & 0 \\ 0 & I_{n-r} \end{array}\right]$$

has rank r. It follows that $\begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} B_1 & 0 \\ B_3 & 0 \end{bmatrix}$ have rank r, so that B_1 is nonsingular.

By Lemma 2, $U^*B\bar{U} = \begin{bmatrix} B_1 & B_1K^T \\ KB_1 & KB_1K^T \end{bmatrix}$, with $rk(U^*B\bar{U}) = rk(B_1) =$

r. By using Penrose representation for the generalized inverse [4], we get

$$(U^*B\bar{U})^+ = \begin{bmatrix} B_1^*PB_1^* & B_1^*PB_1^*K^* \\ \bar{K}B_1^*PB_1^* & \bar{K}B_1^*PB_1^*K^* \end{bmatrix}$$

where $P = (B_1 B_1^* + B_1 K^T \bar{K} B_1^*)^{-1} B_1 (B_1^* B_1 + B_1^* K^* K B_1)^{-1}$

$$U^{T}B^{+}U = (U^{*}B\bar{U})^{+} = \begin{bmatrix} Q & QK^{*} \\ \bar{K}Q & \bar{K}QK^{*} \end{bmatrix} \text{ where}$$

$$Q = (I + K^{T}\bar{K})^{-1}B_{1}^{-1}(I + K^{*}K)^{-1}$$

$$U^{*}A^{+}\bar{U} = (U^{T}AU)^{+} = \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$

$$\begin{split} U^TAB\bar{U} &= U^TAB\bar{U}(U^TAB\bar{U})^+U^TAB\bar{U} \\ &= U^TAB\bar{U}(U^T(AB)^+\bar{U})U^TAB\bar{U} \text{ (since U is unitary)} \\ &= U^TAB\bar{U}(U^TB^+A^+\bar{U})U^TAB\bar{U} \text{ (by hypothesis)} \\ &= U^TAB\bar{U}(U^TB^+U)(U^*A^+\bar{U})U^TAB\bar{U} \text{ (since U is unitary)} \;. \end{split}$$

On simplification, we get,

$$DB_1QB_1 + DB_2\bar{K}QB_1 = DB_1$$

 $\Rightarrow DB_1(I + B_1^{-1}B_2\bar{K})QB_1 = DB_1.$

Since $B_2 = B_1 K^T$, $QB_1 = (I + K^T \bar{K})^{-1}$. Hence $(I + K^T \bar{K}) = (QB_1)^{-1} = I$. Thus $K^T \bar{K} = 0$ which implies $K^* K = 0$ so that K = 0.

$$U^*B\bar{U} = \begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$U^TAU = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow U^*\bar{A}\bar{U} = \begin{bmatrix} \bar{D} & 0 \\ 0 & 0 \end{bmatrix}.$$

Since \bar{D} and B_1 are $r \times r$ nonsingular matrices we have

$$R(\bar{D}) = R(B_1) \implies R\left(\begin{bmatrix} \bar{D} & 0 \\ 0 & 0 \end{bmatrix}\right) = R\left(\begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}\right)$$

$$\Rightarrow R(U^*\bar{A}\bar{U}) = R(U^*B\bar{U})$$

$$\Rightarrow R(\bar{A}) = R(B).$$

Hence the Theorem.

Theorem 6. Let A, B are con- EP_r matrices, rk(AB) = r and $(AB)^+ = A^+B^+$, then AB is con- EP_r .

Proof.

$$R(B) = R(B^{T}) \quad (\text{since } B \text{ is con-}EP_{r})$$

$$\Rightarrow R(\bar{B}) = R(B^{*})$$

$$= R(B^{*}A^{*}) \quad (\text{since } R(B^{*}A^{*}) \subseteq R(B^{*})$$

$$= R(B^{*}A^{*}) \quad (\text{since } R(B^{*}A^{*}) \subseteq R(B^{*})$$

$$= R(AB)^{*} = R(AB)^{*} \quad (\text{by result } (2))$$

$$= R(A^{+}B^{+}) \quad (\text{by hypothesis})$$

$$\subseteq R(A^{+}) = R(A^{*}) = R(\bar{A})$$

$$\quad (\text{by result } (2) \& A \text{ is con-}EP_{r}).$$

$$\Rightarrow R(\bar{B}) = R(\bar{A}) \Rightarrow R(B) = R(A).$$

Since rk(AB) = r and R(B) = R(A), by Corollary 1, AB is con- EP_r . Hence the Theorem.

References

- T. S. Baskett and I. J. Katz, Theorems on Products of EP_r matrices, Linear Algebra Appl., 2(1969), 87-103.
- [2] A. Ben Israel and T. N. E. Greville, Generalized inverses Theory and Applications, Wiley, Interscience, New York, 1974.
- [3] AR. Meenakshi and R. Indira, On conjugate EP matrices, (submitted).
- [4] R. Penrose, On best approximate solutions of linear matrix equations, Proc. Cambridge Phil. Soc., 52(1956), 17-19.

Department of Mathematics, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India.