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ON MULTIPLlCATION MODULES 

Eun SUp Kim and Cbang Woo Cboi 

1. Introduction 

In th is note all rings are commutative rings with an identity and all 
modules are uni tal. Let R be a ring and M an R-module. Thcn Jν IS 

called a multip/ication modu/e if for every submodule N of M there ex is ts 
an ideal 1 of R such that N 1 M. U N is a submodule of M then 
(N : M) = {r E R : rM ç N}. It is clear that every cyclic R-module is 
a multip lication module . Let P be a maximal ideal of a ring R. An R
module M is called P-torsioπ provided for each m E M there exists p E P 
such that (1- p)m = O. On the other h and M is called P-cyclic provided 
there exist x E M and q E P such that (1 - q)M 드 Rx. For givcn an 
R-module M , we consider the associated ideal Ð(M) = εXEM(Rx: M) 

In Section 2 we investigate multipli cation modules. We show that an 
R-module M is a multiplication module if and only if Rm = Ð(M)m for 
all m E M 

In Section 3 some properties of multiplicat ion mod111es are studied 

2. Multiplication modules 

Let R be a commutative ring with identity and M an R-module. Then 
M is called a multiplicalion module if for each submodule N of M thcre 
exists an ideal 1 of R such that N = 1M. Let N be a s l1 bmodule of a 
mult ipl icat ion mod111e fI，ι It is well known that M is a multipli cat ion 
module if and only if N = (N : M)M for all submodules N of M . An 
R -module M is call어 a locally cyclic if Mp is a cyclic Rp-module for all 
maximal ideals P of R. 
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Theorem 1. Let R be a ring and let M be an R-module. Then the 
following statements are equivalent. 

(i) M is a m ultiplicatioπ module 
(ii) Rm = O(M)m for all m E M. 

P1'Oof Suppose M is a multiplication R-module. Let m E M. Then Rm = 
(Rm : M)M. Thus M = εmEMRm = εmEM(Rm : M)M = O(M)M 
where O(M) = εmEM(Rm : M ). Now let x E M . Then 

Rx = (Rx: M)M = (Rx : M)O(M)M 

O(M)(Rx: M)M = O(M)Rx. 

Therefore R x = O(M)x for all x E M ‘ 

Conve 1'sely, suppose (ii) holds. Let P be a maximal ideal of R. If 
O(M) 드 P then for any m E M , Rm = Pm by hypothesis and hence lvf is 
P-to1'sion fo 1' all maximal ideal P of R. Othe1'wise O(M ) cl P , and hence 
(Rx : M) cl P for some x E M. Then (1 - q)M 드 Rx for some q E P. 
By [4, Theo 1'em 1.2], M is a multiplication R-module 

Theo 1'em 1 has two corollaries which we wish to mention. The fìrst 
is an immediate consequence of the theorem and the second is an alter
native proof of the well known result [4, Corollary 1.4.] following by our 
technique. 

Corollary 2. Let R be a domain and let M be a faithjiμ1 multiplication 
R-module. Then M is finitely generated and locally cyclic . 

Proof By Theorem 1, Rm = O(M)m for all m E M and hence R(Rm) = 
R(O(M)m) = O(M)(Rm) for all m E M. But Rm is a faithful R-m。ωle
by [4 , Lemma 4.1] and so Rm is a fìnitely generated faithful multiplication 
R-module. By [4 , Theorem 3.1], O( M) = R. Thus M is finitely generated 
and locally cyclic by [1, T heorem 11 ‘ 

Corollary 3. Let 1 be a multiplicalion ideal of a 1';lIg R and M a multi
plication R-module. Then 1M is a multiplication R-module. 

Proof By the theorem Ri = O( I) i , Rm = O(M)m for all i E 1, m ε M. 
Thus Rim = 0(1)O(M)im. Clearly O(I )O(M) 드 0(1 M) and so Rim = 
0(1 M)im. Therefore Rx = 0(1 M)x for all x E 1M. By Th∞rem 1, 1M 
is a multiplication module. 

For an R-module homomorphism f : M - • N , our next result shows 
a criterion that it makes onto. 
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Theorem 4. Let f : M - • N be a homomorphism of R -modules. Then 
the fo l/owing slalemenls are equivalent. 

(i) For each maximal ide띠 P of R , the iπduced map 지PJ:MfPM-→ 
NfPN given by m+ PM >--+ f(m) + PN 양 onto and N f f(M ) is a mu/
tip/ication R-module. 

(ii) f is onto. 

Proof (ii) ~ (i). Obvious 
(i) ~ (ii). Note that f(M) + P N = N for all maximaJ ideals P of R. 

This implies P(Nff(M)) = Nff(M). Since Nff(M) is a muJtiplication 
R-module, f(M) = N. For, suppose M is a multiplication R-module and 
M = P M for all maximal ideal P of R. If M is nonzero, then there 
exists a maximal ideal Q of R such that M is Q-cyclic by [4 , Theorem 
2.5J and hence M ￥ QM by [4, Theorem 1.2J and [8, Lemma 6J. This is 
a contradiction and so our theorem is proved. 

Compare the next result with [4 , Corollary 2.4J 

Proposition 5. Let M be an R-module which is P-cyclic fo r only finilely 
many maximal ideals P of R. Then M is a multiplication module if and 
only if M is cyclic. 

Proof As we remarked above, cycl ic moduJes are multiplication modules. 
Conversely, suppose M is a muJtipJication moduJe. Let P!, P2 ,' . . ,Pn be 
the maximaJ ideaJs of R such that M is P-cycli c. Then M 폼 PiM for 
all 1 ::::; i ::::; n . Put PiM = Ni. Then N i is a maximal submodules of M 
for each 1 ::::; i ::::; n by [4, Theorem 2.5J. These Ni are the onJy maximal 
submodules of M. Indeed, suppose that there exists a maximaJ submodule 
N of M such that N " Ni for all 1 ::::; i ::::; n. Then again by [4 , Theorem 
2.5], there exists a maximal ideal P of R such that N = PM " M. By [8, 
Lemma 6J , M is P-cyclic. By hypothesis P = Pi for some 1 으 i ::::; n . This 
implies N = Ni for some 1 ::::; i ::::; n , a contradiction. Thus M has only 
finitely many maximal s배moduJes. Hence M is cyclic by [4, Theorem 
2.8J 

3. Some properties of multiplication modules 

Let R be a commutative ring with identity and M an R-module. 1n 
this section we investigate some properties of multiplication modules. In 
particular, we prove Fitting’s Lemma in terms of multiplication module. 

Theorem 6 . Let M be a multiplicalion R-module satisfying descending 
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chain condilions on multiplicalion submodules and lel f E End R( M). 
Then f is a one-lo- one function if and only if f maps onlo M. 

Proof Suppose f maps onto M. Ker(f) = 1M for some ideal I of R. 
Thus 0 = f(Kerf) = f(IM) = If(M ) = 1M = Kerf and hence f is a 
on웅to-one function. 

Conversely, suppose that f is one-to-one and consider the chain of R
submodules M 2 f (M) 극 j2 (M) 2 .. .. Since M is a multiplication R 
module, so is every bomomorphic images of M. By hypothesis , this chain 
wiU terminate after a finite number of steps, say n steps; t hen r (M) = 
r+1 (M). Given an arbitrary x E M , r(x) = r+1 (y) for some y E M. 
As f is assumed to be a one-to• one function , r also enjoys this property, 
whencex = f(ν). This implication is that M = f(M) and so f maps onto 
M 

Proposition 7. Lel M be a multiplicalioη R-module. Then 

(i) Every submodule of M is fully invarianl for all f E EndR(M) 

(ii) f E EndR(M) is an epimorphism if and 0πly σ UIN): N • N is 
an epimorphism for all submodμle N of M . 

Proof (i) Let N be a submodule of M. By hypothesis, N = 1M for some 
ideal 1 of R. Let f E EndR(M). Then f(N) = f (I M) = I f(M) 드 1M= 
N. i.e. , f(N) 드 N for all s뼈module N of M. Hence every submodule of 
M is fully invariant for all f E EndR(M) 

(ii) The sufficiency is obvious. Conversely, let N be any submodule of 
M. Then N = 1M for some ideal 1 of R. This implies f(N) = f (I M) = 
1f(M) = 1M = N. This completes the proof 

Note that Proposition 7 (ii) gives at once that every epimorphism of a 
multiplication R-module is an automorphism. 

Next we note a further property of multiplication modules. 

Proposition 8. Lel M be an R-module and let Ro 드 R be a subring of R 
If M is a multiplication Ro -module, then M is a multiplication R -module. 

Proof Let N be a R-submodule of M. Then N is a Ro-submodule of M . 
Since M is a multiplication Ro-module, there exist an ideal 10 of Ro such 
that N = 10 M . Thus N = 10M = 1o(RM ) = (IoR)M. Since Io R is an 
ideal of R, M is a multiplication R-module. 

Theorem 9. Lel M be a multiplicalion R-module satisfying descend
ing chain condilions on multiplication s뼈modules and lel f E EndR(M) 
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Then, for some n , M = rM EÐ f-no. 

Proof Consider the sequence M ::J f(M) ::J F(M) 그 Since every 
homomorphic images of mu\tip\ication modu\es are multiplication ones 
and M satisfìes descending chain conditions on multiplication submod
ules by hypothesis, the sequence becomes stationary after n steps, say. 
Thus f(nl(M) = r +t (M) = ... = Fn(M) = .... Therefore r induces 
an endomorphism on multiplication mod ule f(n끼l 
phi생s잉m’ he얹nc∞:ea뻐na뻐u따tomo야rphi압sm b야y Proposition 7. Thus r(M)nf-nO = o. 
Now take any m E M , t hen r(m) = Fn(n) for some n E M , hence 
m- r(n) E Ker(Jη Since m = r(n)+(m- r(n) ), M = rM EÐ f- nO. 
This completes the proof 

Corollary 10. Jf a free R -module M is a multiplication module, th eπ M 
is isomorphic to a single factor of R i.e. M 은 R. 

Proof Suppose M is isomorphic to a direct sum of R more than two 
Defìne f : M • EÐR by (m"m2 ,mJ,"') • (m2 ,mt ,mJ ," .). Then f is 
an R-automorphism of M. Let N = R EÐ {O} EÐ R EÐ ... EÐ R EÐ . . . be a 
submodule of M. Then f (N) = {O} EÐ R EÐ R EÐ ... EÐ R EÐ ... ~ N , a 
contradiction 

Remark. Corollary 10 shows that if M is a multiplication module as a 
vector space, then the dimension of M is always 1. 

We close this section wi th additional simple properties of multiplication 
modules. 

Proposition 11 . Let M be an R-algebra and a mt‘ltiplication R-module. 
Jf f E EndR(M) , then f is a monomorphism. 

Proof K er f = JM for some ideal J of R. Let x E K er j. Then x 
이mt + '" + anmn for some a ‘ E J, m; E M (1 < i < n). Since 
y = y1 E JM = Kerf for all y E J, 0 = j(a;) = j(a‘1) = a;l(1) = a ‘’ 
This implies x = O. This completes the proof 
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