# ON MULTIPLICATION MODULES 

Eun Sup Kim and Chang Woo Choi

## 1. Introduction

In this note all rings are commutative rings with an identity and all modules are unital. Let $R$ be a ring and $M$ an $R$-module. Then $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N=I M$. If $N$ is a submodule of $M$ then $(N: M)=\{r \in R: r M \subseteq N\}$. It is clear that every cyclic $R$-module is a multiplication module. Let $P$ be a maximal ideal of a ring $R$. An $R$ module $M$ is called $P$-torsion provided for each $m \in M$ there exists $p \in P$ such that $(1-p) m=0$. On the other hand $M$ is called $P$-cyclic provided there exist $x \in M$ and $q \in P$ such that $(1-q) M \subseteq R x$. For given an $R$-module $M$, we consider the associated ideal $\theta(M)=\sum_{x \in M}(R x: M)$.

In Section 2 we investigate multiplication modules. We show that an $R$-module $M$ is a multiplication module if and only if $R m=\theta(M) m$ for all $m \in M$.

In Section 3 some properties of multiplication modules are studied.

## 2. Multiplication modules

Let $R$ be a commutative ring with identity and $M$ an $R$-module. Then $M$ is called a multiplication module if for each submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N=I M$. Let $N$ be a submodule of a multiplication module $M$. It is well known that $M$ is a multiplication module if and only if $N=(N: M) M$ for all submodules $N$ of $M$. An $R$-module $M$ is called a locally cyclic if $M_{p}$ is a cyclic $R_{p}$-module for all maximal ideals $P$ of $R$.

Received November 5, 1991.
This research was partially supported by TGRC-KOSEF.

Theorem 1. Let $R$ be a ring and let $M$ be an $R$-module. Then the following statements are equivalent.
(i) $M$ is a multiplication module
(ii) $R m=\theta(M) m$ for all $m \in M$.

Proof. Suppose $M$ is a multiplication $R$-module. Let $m \in M$. Then $R m=$ $(R m: M) M$. Thus $M=\sum_{m \in M} R m=\sum_{m \in M}(R m: M) M=\theta(M) M$. where $\theta(M)=\sum_{m \in M}(R m: M)$. Now let $x \in M$. Then

$$
\begin{aligned}
R x & =(R x: M) M=(R x: M) \theta(M) M \\
& =\theta(M)(R x: M) M=\theta(M) R x .
\end{aligned}
$$

Therefore $R x=\theta(M) x$ for all $x \in M$.
Conversely, suppose (ii) holds. Let $P$ be a maximal ideal of $R$. If $\theta(M) \subseteq P$ then for any $m \in M, R m=P m$ by hypothesis and hence $M$ is $P$-torsion for all maximal ideal $P$ of $R$. Otherwise $\theta(M) \nsubseteq P$, and hence $(R x: M) \nsubseteq P$ for some $x \in M$. Then $(1-q) M \subseteq R x$ for some $q \in P$. By [4, Theorem 1.2], $M$ is a multiplication $R$-module.

Theorem 1 has two corollaries which we wish to mention. The first is an immediate consequence of the theorem and the second is an alternative proof of the well known result [4, Corollary 1.4.] following by our technique.

Corollary 2. Let $R$ be a domain and let $M$ be a faithful multiplication $R$-module. Then $M$ is finitely generated and locally cyclic.
Proof. By Theorem 1, $R m=\theta(M) m$ for all $m \in M$ and hence $R(R m)=$ $R(\theta(M) m)=\theta(M)(R m)$ for all $m \in M$. But $R m$ is a faithful $R$-module by [4, Lemma 4.1] and so $R m$ is a finitely generated faithful multiplication $R$-module. By [4, Theorem 3.1], $\theta(M)=R$. Thus $M$ is finitely generated and locally cyclic by [1, Theorem 1].
Corollary 3. Let $I$ be a multiplication ideal of $a \operatorname{ring} R$ and $M$ a multiplication $R$-module. Then $I M$ is a multiplication $R$-module.
Proof. By the theorem $R i=\theta(I) i, R m=\theta(M) m$ for all $i \in I, m \in M$. Thus $\operatorname{Rim}=\theta(I) \theta(M) i m$. Clearly $\theta(I) \theta(M) \subseteq \theta(I M)$ and so $\operatorname{Rim}=$ $\theta(I M)$ im. Therefore $R x=\theta(I M) x$ for all $x \in I M$. By Theorem $1, I M$ is a multiplication module.

For an $R$-module homomorphism $f: M \longrightarrow N$, our next result shows a criterion that it makes onto.

Theorem 4. Let $f: M \longrightarrow N$ be a homomorphism of $R$-modules. Then the following statements are equivalent.
(i) For each maximal ideal $P$ of $R$, the induced map $f_{[P]}: M / P M \longrightarrow$ $N / P N$ given by $m+P M \mapsto f(m)+P N$ is onto and $N / f(M)$ is a multiplication $R$-module.
(ii) $f$ is onto.

Proof. (ii) $\Rightarrow$ (i). Obvious.
(i) $\Rightarrow$ (ii). Note that $f(M)+P N=N$ for all maximal ideals $P$ of $R$. This implies $P(N / f(M))=N / f(M)$. Since $N / f(M)$ is a multiplication $R$-module, $f(M)=N$. For, suppose $M$ is a multiplication $R$-module and $M=P M$ for all maximal ideal $P$ of $R$. If $M$ is nonzero, then there exists a maximal ideal $Q$ of $R$ such that $M$ is $Q$-cyclic by [4, Theorem 2.5] and hence $M \neq Q M$ by [4, Theorem 1.2] and [8, Lemma 6]. This is a contradiction and so our theorem is proved.

Compare the next result with [4, Corollary 2.4].
Proposition 5. Let $M$ be an $R$-module which is $P$-cyclic for only finitely many maximal ideals $P$ of $R$. Then $M$ is a multiplication module if and only if $M$ is cyclic.
Proof. As we remarked above, cyclic modules are multiplication modules. Conversely, suppose $M$ is a multiplication module. Let $P_{1}, P_{2}, \cdots, P_{n}$ be the maximal ideals of $R$ such that $M$ is $P$-cyclic. Then $M \neq P_{i} M$ for all $1 \leq i \leq n$. Put $P_{i} M=N_{i}$. Then $N_{i}$ is a maximal submodules of $M$ for each $1 \leq i \leq n$ by [4, Theorem 2.5]. These $N_{i}$ are the only maximal submodules of $M$. Indeed, suppose that there exists a maximal submodule $N$ of $M$ such that $N \neq N_{i}$ for all $1 \leq i \leq n$. Then again by [4, Theorem 2.5], there exists a maximal ideal $P$ of $R$ such that $N=P M \neq M$. By [8, Lemma 6], $M$ is $P$-cyclic. By hypothesis $P=P_{i}$ for some $1 \leq i \leq n$. This implies $N=N_{i}$ for some $1 \leq i \leq n$, a contradiction. Thus $M$ has only finitely many maximal submodules. Hence $M$ is cyclic by [4, Theorem 2.8].

## 3. Some properties of multiplication modules

Let $R$ be a commutative ring with identity and $M$ an $R$-module. In this section we investigate some properties of multiplication modules. In particular, we prove Fitting's Lemma in terms of multiplication module.

Theorem 6. Let $M$ be a multiplication $R$-module satisfying descending
chain conditions on multiplication submodules and let $f \in \operatorname{End}_{R}(M)$. Then $f$ is a one-to-one function if and only if $f$ maps onto $M$.

Proof. Suppose $f$ maps onto $M . \operatorname{Ker}(f)=I M$ for some ideal $I$ of $R$. Thus $0=f(\operatorname{Ker} f)=f(I M)=I f(M)=I M=\operatorname{Ker} f$ and hence $f$ is a one-to-one function.

Conversely, suppose that $f$ is one-to-one and consider the chain of $R$ submodules $M \supseteq f(M) \supseteq f^{2}(M) \supseteq \cdots$. Since $M$ is a multiplication $R-$ module, so is every homomorphic images of $M$. By hypothesis, this chain will terminate after a finite number of steps, say $n$ steps; then $f^{n}(M)=$ $f^{n+1}(M)$. Given an arbitrary $x \in M, f^{n}(x)=f^{n+1}(y)$ for some $y \in M$. As $f$ is assumed to be a one-to-one function, $f^{n}$ also enjoys this property, whence $x=f(y)$. This implication is that $M=f(M)$ and so $f$ maps onto $M$.

Proposition 7. Let $M$ be a multiplication $R$-module. Then
(i) Every submodule of $M$ is fully invariant for all $f \in \operatorname{End}_{R}(M)$.
(ii) $f \in \operatorname{End}_{R}(M)$ is an epimorphism if and only if $(f \mid N): N \rightarrow N$ is an epimorphism for all submodule $N$ of $M$.
Proof. (i) Let $N$ be a submodule of $M$. By hypothesis, $N=I M$ for some ideal $I$ of $R$. Let $f \in \operatorname{End}_{R}(M)$. Then $f(N)=f(I M)=I f(M) \subseteq I M=$ $N$. i.e., $f(N) \subseteq N$ for all submodule $N$ of $M$. Hence every submodule of $M$ is fully invariant for all $f \in \operatorname{End}_{R}(M)$.
(ii) The sufficiency is obvious. Conversely, let $N$ be any submodule of $M$. Then $N=I M$ for some ideal $I$ of $R$. This implies $f(N)=f(I M)=$ $I f(M)=I M=N$. This completes the proof.

Note that Proposition 7 (ii) gives at once that every epimorphism of a multiplication $R$-module is an automorphism.

Next we note a further property of multiplication modules.
Proposition 8. Let $M$ be an $R$-module and let $R_{0} \subseteq R$ be a subring of $R$. If $M$ is a multiplication $R_{0}$-module, then $M$ is a multiplication $R$-module. Proof. Let $N$ be a $R$-submodule of $M$. Then $N$ is a $R_{0}$-submodule of $M$. Since $M$ is a multiplication $R_{0}$-module, there exist an ideal $I_{0}$ of $R_{0}$ such that $N=I_{0} M$. Thus $N=I_{0} M=I_{0}(R M)=\left(I_{0} R\right) M$. Since $I_{0} R$ is an ideal of $R, M$ is a multiplication $R$-module.

Theorem 9. Let $M$ be a multiplication $R$-module satisfying descending chain conditions on multiplication submodules and let $f \in \operatorname{End}_{R}(M)$.

Then, for some $n, M=f^{n} M \oplus f^{-n} 0$.
Proof. Consider the sequence $M \supset f(M) \supset f^{2}(M) \supset \cdots$. Since every homomorphic images of multiplication modules are multiplication ones and $M$ satisfies descending chain conditions on multiplication submodules by hypothesis, the sequence becomes stationary after $n$ steps, say. Thus $f^{(n)}(M)=f^{n+1}(M)=\cdots=f^{2 n}(M)=\cdots$. Therefore $f^{n}$ induces an endomorphism on multiplication module $f^{(n)}(M)$ which is an epimorphism, hence an automorphism by Proposition 7. Thus $f^{n}(M) \cap f^{-n} 0=0$. Now take any $m \in M$, then $f^{n}(m)=f^{2 n}(n)$ for some $n \in M$, hence $m-f^{n}(n) \in \operatorname{Ker}\left(f^{n}\right)$. Since $m=f^{n}(n)+\left(m-f^{n}(n)\right), M=f^{n} M \oplus f^{-n} 0$. This completes the proof.

Corollary 10. If a free $R$-module $M$ is a multiplication module, then $M$ is isomorphic to a single factor of $R$ i.e. $M \cong R$.
Proof. Suppose $M$ is isomorphic to a direct sum of $R$ more than two. Define $f: M \rightarrow \oplus R$ by $\left(m_{1}, m_{2}, m_{3}, \cdots\right) \rightarrow\left(m_{2}, m_{1}, m_{3}, \cdots\right)$. Then $f$ is an $R$-automorphism of $M$. Let $N=R \oplus\{0\} \oplus R \oplus \cdots \oplus R \oplus \cdots$ be a submodule of $M$. Then $f(N)=\{0\} \oplus R \oplus R \oplus \cdots \oplus R \oplus \cdots \nsubseteq N$, a contradiction.

Remark. Corollary 10 shows that if $M$ is a multiplication module as a vector space, then the dimension of $M$ is always 1 .

We close this section with additional simple properties of multiplication modules.

Proposition 11. Let $M$ be an $R$-algebra and a multiplication $R$-module. If $f \in \operatorname{End}_{R}(M)$, then $f$ is a monomorphism.
Proof. $\operatorname{Ker} f=I M$ for some ideal $I$ of $R$. Let $x \in \operatorname{Kerf}$. Then $x=$ $\alpha_{1} m_{1}+\cdots+\alpha_{n} m_{n}$ for some $\alpha_{i} \in I, m_{i} \in M(1 \leq i \leq n)$. Since $y=y 1 \in I M=K e r f$ for all $y \in I, 0=f\left(\alpha_{i}\right)=f\left(\alpha_{i} 1\right)=\alpha_{i} f(1)=\alpha_{i}$. This implies $x=0$. This completes the proof.

ACKNOWLEDGEMENT. The authors wish to thank Patrick F. Smith for his helpful comments and suggestions.

## References

[1] D.D. Anderson, Some remarks on multiplication ideals, Math. Japonica 4 (1980),

463-469.
[2] F.W. Anderson and K.R. Fuller, Rings and categories of modules(Springer-Verlag, 1974).
[3] A. Barnard, Multiplication module, J. Algebra 71(1981), 174-178.
[4] Z.A. EL-BAST and P.F. Smith, Multiplication modules, Communication in Algebra, Vol.16,(1988), 755-779.
[5] Thomas W. Hungerford, Algebra, New York, Springer Verlag, 1974.
[6] J. Lambek, Lectures on rings and modules, London 1966.
[7] G.M. Low and P.F. Smith, Multiplication modules and ideals, To appear in Communication in Algebra.
[8] Patrick, F. Smith, Some remarks on multiplication modules, Arch. Math. Vol.50, (1988), 223-235.

Department of Mathematics, Kyungpook National University, Taegu 702701, Korea.

