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ON MULTIPLICATION MODULES

Eun Sup Kim and Chang Woo Choi

1. Introduction

In this note all rings are commutative rings with an identity and all
modules are unital. Let R be a ring and M an R-module. Then M is
called a multiplication module if for every submodule N of M there exists
an ideal I of R such that N = IM. If N is a submodule of M then
(N:M)={re R:rM C N}. It is clear that every cyclic R-module is
a multiplication module. Let P be a maximal ideal of a ring B. An R-
module M is called P-torsion provided for each m € M there exists p € P
such that (1 — p)m = 0. On the other hand M is called P-cyclic provided
there exist z € M and ¢ € P such that (1 — ¢)M C Rz. For given an
R-module M, we consider the associated ideal 0(M) = 3 cp( Rz : M).

In Section 2 we investigate multiplication modules. We show that an
R-module M is a multiplication module if and only if Rm = 8(M)m for
allme M.

In Section 3 some properties of multiplication modules are studied.

2. Multiplication modules

Let R be a commutative ring with identity and M an R-module. Then
M is called a multiplication module if for each submodule N of M there
exists an ideal I of R such that N = IM. Let N be a submodule of a
multiplication module M. It is well known that M is a multiplication
module if and only if N = (N : M)M for all submodules N of M. An
R-module M is called a locally cyclic if M, is a cyclic R,-module for all
maximal ideals P of R.
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Theorem 1. Let R be a ring and let M be an R-module. Then the
following statements are equivalent.

(1) M is a multiplication module

(i) Rm = 0(M)m for alm € M.
Proof. Suppose M is a multiplication R-module. Let m € M. Then Rm =
(Rm : MYM. Thus M = ¥ ey Rm = L epm(Rm : MM = 6(M)M.
where 8(M) =3 cp(Rm : M). Now let z € M. Then

Rr = (Rz:M)M = (Ra: M)O(M)M
= O(M)(Rz: M)M = 0(M)Rz.

Therefore Rz = §(M)z for all z € M.

Conversely, suppose (ii) holds. Let P be a maximal ideal of R. If
O(M) C P then for any m € M, Rm = Pm by hypothesis and hence M is
P-torsion for all maximal ideal P of R. Otherwise 8(M) € P, and hence
(Rz : M) € P for some z € M. Then (1 — ¢)M C Rz for some q € P.
By [4, Theorem 1.2], M is a multiplication R-module.

Theorem 1 has two corollaries which we wish to mention. The first
is an immediate consequence of the theorem and the second is an alter-
native proof of the well known result [4, Corollary 1.4.] following by our
technique.

Corollary 2. Let R be a domain and let M be a faithful multiplication
R-module. Then M is finitely generated and locally cyclic.

Proof. By Theorem 1, Rm = (M )m for all m € M and hence R(Rm) =
R(O(M)m) = 6(M)(Rm) for all m € M. But Rm is a faithful R-module
by [4, Lemma 4.1] and so Rm is a finitely generated faithful multiplication
R-module. By [4, Theorem 3.1], (M) = R. Thus M is finitely generated
and locally cyclic by [1, Theorem 1].

Corollary 3. Let I be a multiplication ideal of a ring R and M a multi-
plication R-module. Then IM is a multiplication R-module.

Proof. By the theorem R: = 6(I)i, Rm = §(M)m forall: € I, m € M.
Thus Rim = 0(1)8(M)im. Clearly 0(1)0(M) C 6(IM) and so Rim =
O(IM)im. Therefore Rz = 0(IM)zx for all z € IM. By Theorem 1, IM

is a multiplication module.

For an R-module homomorphism f: M — N, our next result shows
a criterion that it makes onto.
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Theorem 4. Let f : M — N be a homomorphism of R-modules. Then
the following statements are equivalent.

(i) For each mazimal ideal P of R, the induced map fip): M/|PM —
N/PN given by m + PM + f(m)+ PN is onto and N/ f(M) is a mul-
tiplication R-module.

(i) f is onto.

Proof. (ii) = (i). Obvious.

(i) = (ii). Note that f(M)+ PN = N for all maximal ideals P of R.
This implies P(N/f(M)) = N/f(M). Since N/ f(M) is a multiplication
R-module, f(M) = N. For, suppose M is a multiplication R-module and
M = PM for all maximal ideal P of R. If M is nonzero, then there
exists a maximal ideal @ of R such that M is Q-cyclic by [4, Theorem
2.5] and hence M # QM by [4, Theorem 1.2] and [8, Lemma 6]. This is
a contradiction and so our theorem is proved.

Compare the next result with [4, Corollary 2.4].

Proposition 5. Let M be an R-module which is P-cyclic for only finitely
many mazimal ideals P of R. Then M is a multiplication module if and
only if M s cyclic.

Proof. As we remarked above, cyclic modules are multiplication modules.
Conversely, suppose M is a multiplication module. Let Py, P,---, P, be
the maximal ideals of R such that M is P-cyclic. Then M # P,M for
all1 <i <n. Put PM = N,. Then N; is a maximal submodules of M
for each 1 < ¢ < n by [4, Theorem 2.5]. These N; are the only maximal
submodules of M. Indeed, suppose that there exists a maximal submodule
N of M such that N # N; for all 1 <7 < n. Then again by [4, Theorem
2.5], there exists a maximal ideal P of R such that N = PM # M. By [8,
Lemma 6], M is P-cyclic. By hypothesis P = P; for some 1 <7 < n. This
implies N = N, for some 1 <7 < n, a contradiction. Thus M has only
finitely many maximal submodules. Hence M is cyclic by [4, Theorem
2.8].

3. Some properties of multiplication modules

Let R be a commutative ring with identity and M an R-module. In
this section we investigate some properties of multiplication modules. In
particular, we prove Fitting’s Lemma in terms of multiplication module.

Theorem 6. Let M be a multiplication R-module satisfying descending
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chain conditions on multiplication submodules and let f € End r(M).
Then f is a one—to—one function if and only if f maps onto M.

Proof. Suppose f maps onto M. Ker(f) = IM for some ideal I of R.
Thus 0 = f(Kerf) = f(IM) = If(M) = IM = Kerf and hence f is a
one-to-one function.

Conversely, suppose that f is one-to—one and consider the chain of R-
submodules M D f(M) 2 f*(M) 2 ---. Since M is a multiplication R~
module, so is every homomorphic images of M. By hypothesis, this chain
will terminate after a finite number of steps, say n steps; then f*(M) =
fr*(M). Given an arbitrary z € M, f*(z) = f**!(y) for some y € M.
As f is assumed to be a one-to—one function, f™ also enjoys this property,
whence z = f(y). This implication is that M = f(M) and so f maps onto
M.

Proposition 7. Let M be a multiplication R-module. Then

(1) Every submodule of M is fully invariant for all f € Endp(M).

(i1) f € Endr(M) is an epimorphism if and only if (fI|N): N — N is
an epimorphism for all submodule N of M.
Proof. (i) Let N be a submodule of M. By hypothesis, N = I M for some
ideal I of R. Let f € Endgr(M). Then f(N)= f(IM)=1f(M)CIM =
N. ie., f(N) C N for all submodule N of M. Hence every submodule of
M is fully invariant for all f € Endg(M).

(ii) The sufficiency is obvious. Conversely, let N be any submodule of
M. Then N = IM for some ideal I of R. This implies f(N) = f(IM) =
If(M)=1IM = N. This completes the proof.

Note that Proposition 7 (ii) gives at once that every epimorphism of a
multiplication R-module is an automorphism.

Next we note a further property of multiplication modules.

Proposition 8. Let M be an R-module and let Ry C R be a subring of R.
If M is a multiplication Ro-module, then M is a multiplication R-module.
Proof. Let N be a R-submodule of M. Then N is a Rg-submodule of M.
Since M is a multiplication Ry-module, there exist an ideal I of Ry such
that N = IgM. Thus N = [(M = I,(RM) = ([,R)M. Since IR is an
ideal of R, M is a multiplication R-module.

Theorem 9. Let M be a multiplication R-module satisfying descend-
ing chain conditions on multiplication submodules and let f € Endr(M).
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Then, for somen, M = f*M & f~"0.

Proof. Consider the sequence M O f(M) D f*(M) D ---. Since every
homomorphic images of multiplication modules are multiplication ones
and M satisfies descending chain conditions on multiplication submod-
ules by hypothesis, the sequence becomes stationary after n steps, say.
Thus f)W(M) = fMY (M) = --- = f?»(M) = ---. Therefore f™ induces
an endomorphism on multiplication module f("(M) which is an epimor-
phism, hence an automorphism by Proposition 7. Thus f*(M)Nf~"0 = 0.
Now take any m € M, then f"(m) = f?(n) for some n € M, hence
m— f*(n) € Ker(f"). Since m = f*(n)+(m— f*(n)), M = f*Ma® f~"0.
This completes the proof.

Corollary 10. If a free R-module M s ¢ multiplication module, then M
is isomorphic to a single factor of R i.e. M = R.

Proof. Suppose M is isomorphic to a direct sum of R more than two.
Define f : M — @R by (m;,my,m3,---) — (mg,my,ma,---). Then f is
an R-automorphismof M. Let N =R® {0} R®--- & R®---bea
submodule of M. Then f(N) = {0} R&R®---dR&S--- € N, a
contradiction.

Remark. Corollary 10 shows that if M is a multiplication module as a
vector space, then the dimension of M is always 1.

We close this section with additional simple properties of multiplication
modules.

Proposition 11. Let M be an R-algebra and a multiplication R-module.
If f € Endp(M), then f is @ monomorphism.

Proof. Kerf = IM for some ideal I of R. Let * € Kerf. Then z =
aymy + -+ + agmy, for some o; € I, m; € M (1 < 1 < n). Since
y=y1€IM—Kerff0ralyEIOMf( = flagl) = e f(1) = o,
This implies z = 0. This completes the proof.
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