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ON A CLASS OF MULTIVALENT SPIRAL-LIKE
FUNCTIONS

S. K. PAL and K. K. DIXIT

Let S)(A, B, q) denote the class of functions f(z) = 2P+ 332, @n4,2" P
which are regular in the unit disc U = {z : |z| < 1} and satisfy the
condition

enzf’(z) 2 p+{pB+(A-B)(p—9q)}z
f(2) 1+ Bz

cos A +ipsin A,z € U,

and the class T;(A, B, q) denote the class of functions g(z) = L+302, a,z" P+
regular in the punctured disc U’ = {2z : 0 < |z| < 1} and satisfy the con-
dition
n29(z) _p+{pB+(A-B)(p—q)}=z
=€ =
g(z) 1+ Bz

cos A +ipsin A,z € U’

where A, B are arbitrary fixed numbers -1 < B< A <1, € (—7/2,7/2)
and 0 < ¢ < p.

In this paper we obtain sharp coefficient estimates for the class S;,‘(A, B,q)
and T (A, B, q) and maximization of |ap42—pal,,| over the class S;,\(A, B, q)
for real and complex values of u.

1. Introduction

Let S)(p > 1) denote the class of the form

)=+ uype™
n=1

Received February 21, 1990
Revised November 7,1990

87



88

which are regular and p-valent in the unit disc U = {z : [z] < 1}. For
A, Bfixed, -1 < B<A<1,A€(—7n/2,7%/2) and 0 < g < p, we say that
feS)(A B,q)if

2 2L'(2) Pt {pB+(A-B)(p—q)}2
f(2) 1+ Bz

It follows from the definition of subordination that

P21z _pt{pB+ (A - B)(p - g)}uw(z)
f(2) 1+ Bu(z)

where w(z) is regular in U and satisfying the conditions w(0) = 0, |w(z)| <
l,forz e U.

By giving specific values to A, B, A,p and ¢, we obtain the following
subclasses of A-spiral functions studied by various authors in earlier works.

(i) Taking ¢ = 0 and p = 1, the class S)(A, B, q) coincides with the
class S*(A, B) studied by Dashrath and Shukla [3].

(ii) Taking ¢ = 0,A = 0,4 = (2a8/p) — 1 and B = 23 — 1, the class
S}(A, B,q) coincides with the class S;(a,B) studied by Aouf [1].

(iii) Taking ¢ = 0, A = 1 — (2a/p), B = —1, the class S;(4, B, q)
coincides with the class S*(p, a) introduced by Patil and Thakare [6].

Let T)(A, B, q) be the class of functions g(z) = L + 322 a,2" P+
analytic in U’ = {2 : 0 < |z| < 1} and satisfying the condition

i229'(z) _p+{pB+(A—-B)(p—q)}=z
—€ <
g(z) 1+ Bz
where -1 < B< A<1and A € (—7/2,7/2), 0 < ¢ < p, it follows from
the definition of subordination that
29 _p+{pB+(A- B)(p—q)}w(z)
9(z) 1+ Buw(z)

cos A+ ipsin A,z € U.

cos A+ipsin A,z € U, (1.1)

cos A +ipsin A\, z € U’,

cos A+ ipsin A,z € U',

(1.2)
where w(z) is analytic in U and satisfying the condition w(0) = 0, |w(z)| <
1, for z € U.

Clearly for p = 1 and ¢ = 0 we have the class T*(A, B) considered by
Dashrath and Shukla [3].

The purpose of this paper is to obtain sharp coefficient estimates for
the classes S;‘(A, B, q) and Tp"(A, B, q) by using the method of Clunie [2],
and maximization of |a, — pa?,,| over the class S)(A, B,q) for a given
real as-well-as a complex number u.



On a class of multivalent spiral-like functions 89

It is worthwhile to mention that some known results appear to be
particular cases of our results.

2. Lemmas
The following lemma is to be found in Nehari [5, p.172].

Lemma 2.1. Ifw(z) is analytic in U and satisfying the conditions w(0) =
0 and |w(z)| < 1 forz € U, then |w(z)| < |z| and that if w(z) = 132, b2*,
then

6| <1

and
lb2] <1 — [By*. (2.1)

The following lemma is due to Keogh and Merkes [4], the proof of
which may be given by using Lemma 2.1.

Lemma 2.2. Let w(z) = 322, biz* be analytic with |w(z)| < 1 in U. If
S is any complex number, then

|b, — Sb2| < max(1,|S]). (2.2)

Equality may be attained with the functions w(z) = 2% and w(z) = 2.

Lemma 2.3. If m is natural number such that m > 2, then

o A= BI04 L (A= B)p—a) — B
—k*{1+ (1 — B*)tan® \}) x i:[;u,-]
: "‘Hu (2.3)
where
o MA=Blp-gioosde™@ Byl oo b5 @A)

Al (7 +1)2
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Proof. We prove the lemma by induction on m. For m = 2 lemma is
obvious. Next suppose that the result is true for m = ¢ — 1, then for
m = £ the left member of (2.3) reduces to

cos? =
P (A= BP0 + LA~ B)p - ) = BY
—k*{1 + (1 — B*)tan? ,\}])ﬁ u;

HI(A— B)(p— ) ~ B~ 1)} — (€= 11 + (L~ B tan® 1)) TT )

{(€ = 1)? T] w; + cos? A[{(A — B)(p — q) — B(€ —1)}?

i=0

1
£
-2

—(£—1)*{1+4 (1 - B*) tan® A} [] u;}

-0

-2
_ %[{(A ~ B)(p—q) — B¢ — )} cos® A+ B~ 1sin® ] [
-1 i
_ 1:[0%

showing that (2.3) is valid for m = ¢, and we are done.

3. Main Results
Theorem 3.1. If f(z) = 22 + 52, an4p2™*? € S)(A, B, q), then

n=1
lapy1| < (A= B)(p—g)cos }; (3.1)
il & A= Bo—diond o o (3.2

for {(A— B)(p—q)— B} < \/{1 +(1— B?)tan? A} ; and

n-—1

anspl < [T ufin > 2 (3.3)

=0

for {(A-B)(p—¢q)—(n—1)B} > (n— 1)\/{1 + (1 — B?)tan? A}, where
u; is defined by (2.4) for j = 0,1,2,3,---. The bounds (3.1), (3.2) and
(3.3) are sharp.
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Proof. By (1.1) we have

e sec Azf'(z) — p(1 + itan \) f(2) -

= [{Bp+ (A~ B)(p— q) +iBtan A} f(z) — Be sec A f'(2)Jw(2)
that is,

(L +itan)) Y kayyp2*t?
k=1

— [S{Bp+ (A= B)(p— q) +iBtan A — B(k + p)e® sec AJaxspz +7)u(z),

k=0

where a, = 1. Since w(z) = 132, biz* and dy4, = {(1+itan A)kaxs, —cr}
we obtain for n > 2,

n oo n-1
(1+itan)) Y kapypz™P 4+ D diyp?*P = [D_{Bp+(A-B)(p—q)
k=1 k=n+1 k=0

+iBtan A — B(k + p)e™ sec A}agy 2" P w(z), (3.4)

where 332, .1 dk4p2**? converges in U. Since (3.4) has the form F(z) =
G(z) w(z), where |w(z)| < 1, it follows that

1 2r 1 2r ids 12
— < h . .
%]0 |F(re®)|?do 21[ G(re®)[*dd for 0 < r < 1 (3.5)

By substituting the values of F(z) and G(z) in (3.5) we have

P /\Z k2|0k+p]2’-"2(k+p) 4 Z |dk+p|‘2r2(‘k+p)

k=1 k=n+1

n—1
< Y_[{(A— B)(p— q) — Bk}* + B*k* tan® A]|ags, [’r***7). (3.6)
By letting » — 1 in (3.6) we conclude that

sec AZ E(lagss? < z[{ A — B)(p — q) — Bk} + B*E* tan® \]|ak4p|?

k=0

which may be written as

cos2 A

[(A-B)*(p- q)2+2 (A= B)(p—q) — Bk}?

k=1
—k*{1 4 (1 — B*) tan? A})|ak4,|?] forn =1,2,3,---. (3.7
P

Ian+P|
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Inequality (3.1) follows from (3.7).

Further, {(A — B)(p — q) — B} < /{1 + (1 — B?)tan® \} implies that
{(A=B)(p—q)—(n—1)B} < (n—1)}/{1 + (1 — B2)tan? A}, n > 2, and
all the terms under the summatlon in (3.7) are non-positive and hence we
conclude that

(A— B)(p—q)cos A

|anss] < {(A=B)(p-¢)-B} < {1+ (1 - B*)tan? A},n > 2.

The equality in (3.1) and (3.2) is attained for the function.

- —q) cos Ae—FA
ﬂa‘{”U+Bf*WE@ﬁu* , B#0

- — - 21 cog de—ir
zpexp{[AP q(A ?3;1—1) A }, B=0.

Now we prove (3.3) when {(A — B)(p —¢) — (n — 1)B} > (n —
1)\/{1 + (1 — B?)tan?A}, n > 2. All the terms under the summation
are positive. We prove the result by induction on n. Suppose (3.3) holds
for n = m — 1 where m > 2. Then for n = m we obtain from (3.7)

il < A= BPp- 0 + L (A Bp- ) - DR’
4 (1 B an Aok
< 24~ Bnqu+zx{A B)(p - q) - BE)?
—k*{1+ (1 — B*)tan®1}) H Uj]
= ﬁl Uj, by lemma (2.3).

0 (3.3) holds for all n > 2, and hence

-

|an+P| < H U2
j=0

The equality in (3.3) is attained for the function

(A=B)}p—gq)cos Ae ™

ﬂﬂ={fU+Bﬂ “mn B#0

2P exp[{Ap — q¢(A — B)}zcos Ae™*], B =0.
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This completes the proof of the theorem.

Remark. (1) Putting ¢ = 0, p = 1 in Theorem (3.1), we get the result
obtained by Dashrath and Shukla [3].

(2) Putting ¢ = 0,A = 0,4 = (2¢8/p) — 1,B = 23 — 1 in Theorem
(3.1), we get the result obtained by Aouf [1].

(3) Putting ¢ = 0,A =1 — (2a/p) and B = —1 in Theorem (3.1), we
get the result obtained by Patil and Thakare [6].

Theorem 3.2. If f(2) = 2P + 312, an4p2™P € S;(A, B,q), then
(a) for any real number y, we have
( (4=BlezdleAlcos A{(A — B)(p — q)(1 — 2u) — B} + | Bsin A[

o (A—B)(p—gq)—(B+1)
if p < 2(A-B)(p-q)

| 2 | < A-B)p=a)cos A 1oo5 X + | B'sin A|]
pra—Hayyq| < . (A= B)(p—g)(B+1) (A=B)(p—q)+(1-B)
Ty ) R STy ) iy

(A-B)e-a)cseos \{(A — B)(p — ¢)(21 — 1) + B} + [Bsin A[]
if > (p—a)(A-B)+{(1-B)
\ =  2A-B)(p-q)

(3.8)

(b) for any complex number y, we have

(p— q)(Az— B) cos A max{1, |(p — q)(A — B)(2u — 1) cos A

+BeP|} (3.9)

The result is sharp for each p either real or complexz.
Proof. From (1.1) we have
p+{Br+ (A= BYp—huls) _ o 2
1+ Bu(z) e)
where w(z) = 322, k2", w(0) = 0 and |w(z)| < 1 for z € U. From (3.10)

we obtain

|apta — H‘1§+1| <

—iptan ), (3.10)

p(1 +itan A)f(z) — e sec Az f'(2)
Betrsec Az f'(z) — {Bp+ (A — B)(p — q) + iBptan A} f(2)
(14 itanA) 52, kagspe*
(A= B)(p—9) + Sea (A= B)(p — ) — Bk — iBktan Nars, 7"
(14 :tan A
= (A—B)(p— q)[{a.‘o-{-l}z + {2054
(A—B)(p—gq)— B —tBtanl
. (A-B)(p—q)

w(z) =

a§+1}22 + & .]‘
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Comparing the coefficients of z and 2% on both sides, we have

ix o (L+etan ) 2
L A-Bl-9 "
T (I1+ctan ) .
b EBp-g
_(A-B)(p—g)— B—iBtanA

(A—B)(p—q) Ayl

Thus
(A—B)(p -

)

Tekx = e sec A e
_ (A=-B)(p—9q)

bt S 2et sec A\ b

(A— B)(p—q)— B —iBtan A .
2(A-B)(p—q) ki

-+

Hence
apsa — padysl = ATENEZDOXy (4 pyp gyop 1)
S (3.11)

et sec A

+Besec A} -

(a) When p is real, (3.11) becomes
(A= B)(p— q)cos A

|a'p+2_‘ﬂa§+1| < 2 [162] + |(A—B)(p—q)(2p — 1) cos A
+B ) (3.12)
A—B cos)\
ap+2_#a?;+1| < ( )(2 9 +{KA_ B)(p—q)(2p — 1) cos A
+Be™| — 1}]b:)7). (3.13)

Again using Lemma 2.1 for |b;] in (3.13) we are led to

apsa — oy < ATBNEZDOS 00 gy gyau 1)

+B|cos A + |Bsin A|]. (3.14)
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Thus from (3.14) we can simply obtain the result of Theorem 3.2 as
stated in (a) for various values of real p.
(b) When g is a complex number, (3.11) may be written as

(A— B)(p — g)cos A

lapss — pag,| = 5 |62 (3.15)
(A— B)(p— q)(2u — 1) cos A + Be™|, ,
_{ i) }bl|

Using lemma 2.2 in (3.15) we obtain

[(A— B)(p—gq) cos A
2

|aps2 — pa§+1| = max{1, (4 — B)(p — ¢)(2p — 1) cos A

+Be|}
which is (3.9) in (b) of Theorem 3.2.

Remarks 1. Putting ¢ =0, A=1— (2a/p) and B = —1 in Theorem 3.2,
we get the result obtained by Patil and Thakare [6].

2. Putting ¢ = 0,p = 1 in Theorem 3.2, we get the result obtained by
Dashrath and Shukla [3].

Theorem 3.3. If g(z) = 5 + Lo ganz" "t € T;(A, B,q) then |b,| <

Lé'_—Bg;l(%M, forn=20,1,2,3,---. The result is sharp.

Proof. The proof is based on the steps of the theorem (3.1). The following
functions give sharp estimate

{ (B—A)p—q)cos Ae—iA

L(1 + Bz*+") B(nt1) ; B#0

{(B=A)(p—q)-Bp}s"+! cosAe_iA]’ B=0.

9(z) =
-5 exp[ )

Remark. Putting ¢ =0, p = 1 in Theorem 3.3, we get the result obtained
by Dashrath and Shukla [3].
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