ON A CLASS OF MULTIVALENT SPIRAL-LIKE FUNCTIONS

S. K. PAL and K. K. DIXIT

Let $S_p^{\lambda}(A,B,q)$ denote the class of functions $f(z)=z^p+\sum_{n=1}^\infty a_{n+p}z^{n+p}$ which are regular in the unit disc $U=\{z:|z|<1\}$ and satisfy the condition

$$e^{i\lambda}\frac{zf'(z)}{f(z)} < \frac{p + \{pB + (A-B)(p-q)\}z}{1 + Bz}\cos\lambda + ip\sin\lambda, z \in U,$$

and the class $T_p^{\lambda}(A, B, q)$ denote the class of functions $g(z) = \frac{1}{z^p} + \sum_{n=0}^{\infty} a_n z^{n-p+1}$ regular in the punctured disc $U' = \{z : 0 < |z| < 1\}$ and satisfy the condition

$$-e^{i\lambda}\frac{zg'(z)}{g(z)} < \frac{p + \{pB + (A-B)(p-q)\}z}{1 + Bz}\cos\lambda + ip\sin\lambda, z \in U',$$

where A, B are arbitrary fixed numbers $-1 \le B < A \le 1, \lambda \in (-\pi/2, \pi/2)$ and $0 \le q < p$.

In this paper we obtain sharp coefficient estimates for the class $S_p^{\lambda}(A,B,q)$ and $T_p^{\lambda}(A,B,q)$ and maximization of $|a_{p+2}-\mu a_{p+1}^2|$ over the class $S_p^{\lambda}(A,B,q)$ for real and complex values of μ .

1. Introduction

Let $S_p^{\lambda}(p \geq 1)$ denote the class of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p}$$

Received February 21, 1990 Revised November 7,1990 which are regular and p-valent in the unit disc $U = \{z : |z| < 1\}$. For A, B fixed, $-1 \le B < A \le 1$, $\lambda \in (-\pi/2, \pi/2)$ and $0 \le q < p$, we say that $f \in S_p^{\lambda}(A, B, q)$ if

$$e^{i\lambda} \frac{zf'(z)}{f(z)} < \frac{p + \{pB + (A-B)(p-q)\}z}{1 + Bz} \cos \lambda + ip\sin \lambda, z \in U.$$

It follows from the definition of subordination that

$$e^{i\lambda} \frac{zf'(z)}{f(z)} = \frac{p + \{pB + (A - B)(p - q)\}w(z)}{1 + Bw(z)} \cos \lambda + ip \sin \lambda, z \in U, (1.1)$$

where w(z) is regular in U and satisfying the conditions w(0) = 0, |w(z)| < 1, for $z \in U$.

By giving specific values to A, B, λ, p and q, we obtain the following subclasses of λ -spiral functions studied by various authors in earlier works.

- (i) Taking q = 0 and p = 1, the class $S_p^{\lambda}(A, B, q)$ coincides with the class $S^{\lambda}(A, B)$ studied by Dashrath and Shukla [3].
- (ii) Taking $q = 0, \lambda = 0, A = (2\alpha\beta/p) 1$ and $B = 2\beta 1$, the class $S_p^{\lambda}(A, B, q)$ coincides with the class $S_p^{\star}(\alpha, \beta)$ studied by Aouf [1].
- (iii) Taking q = 0, $A = 1 (2\alpha/p)$, B = -1, the class $S_p^{\lambda}(A, B, q)$ coincides with the class $S^{\lambda}(p, \alpha)$ introduced by Patil and Thakare [6].

Let $T_p^{\lambda}(A, B, q)$ be the class of functions $g(z) = \frac{1}{z^p} + \sum_{n=0}^{\infty} a_n z^{n-p+1}$ analytic in $U' = \{z : 0 < |z| < 1\}$ and satisfying the condition

$$-e^{i\lambda}\frac{zg'(z)}{g(z)} < \frac{p + \{pB + (A-B)(p-q)\}z}{1 + Bz}\cos\lambda + ip\sin\lambda, z \in U',$$

where $-1 \le B < A \le 1$ and $\lambda \in (-\pi/2, \pi/2)$, $0 \le q < p$, it follows from the definition of subordination that

$$-e^{i\lambda}\frac{zg'(z)}{g(z)} = \frac{p + \{pB + (A-B)(p-q)\}w(z)}{1 + Bw(z)}\cos\lambda + ip\sin\lambda, z \in U',$$
(1.2)

where w(z) is analytic in U and satisfying the condition w(0) = 0, |w(z)| < 1, for $z \in U$.

Clearly for p = 1 and q = 0 we have the class $T^{\lambda}(A, B)$ considered by Dashrath and Shukla [3].

The purpose of this paper is to obtain sharp coefficient estimates for the classes $S_p^{\lambda}(A, B, q)$ and $T_p^{\lambda}(A, B, q)$ by using the method of Clunie [2], and maximization of $|a_{p+2} - \mu a_{p+1}^2|$ over the class $S_p^{\lambda}(A, B, q)$ for a given real as-well-as a complex number μ .

It is worthwhile to mention that some known results appear to be particular cases of our results.

2. Lemmas

The following lemma is to be found in Nehari [5, p.172].

Lemma 2.1. If w(z) is analytic in U and satisfying the conditions w(0) = 0 and |w(z)| < 1 for $z \in U$, then $|w(z)| \le |z|$ and that if $w(z) = \sum_{k=1}^{\infty} b_k z^k$, then

$$|b_1| \le 1$$

and

$$|b_2| \le 1 - |b_1|^2. \tag{2.1}$$

The following lemma is due to Keogh and Merkes [4], the proof of which may be given by using Lemma 2.1.

Lemma 2.2. Let $w(z) = \sum_{k=1}^{\infty} b_k z^k$ be analytic with |w(z)| < 1 in U. If S is any complex number, then

$$|b_2 - Sb_1^2| \le \max(1, |S|). \tag{2.2}$$

Equality may be attained with the functions $w(z) = z^2$ and w(z) = z.

Lemma 2.3. If m is natural number such that $m \geq 2$, then

$$\frac{\cos^{2} \lambda}{m^{2}} [(A - B)^{2} (p - q)^{2} + \sum_{k=1}^{m-1} (\{(A - B)(p - q) - Bk\}^{2} - k^{2} \{1 + (1 - B^{2}) \tan^{2} \lambda\}) \times \prod_{j=0}^{k-1} u_{j}]$$

$$= \prod_{j=0}^{m-1} u_{j} \tag{2.3}$$

where

$$u_j = \frac{|(A-B)(p-q)\cos\lambda e^{-i\lambda} - Bj|^2}{(j+1)^2}, \text{ for } j = 0, 1, 2, 3, \cdots$$
 (2.4)

Proof. We prove the lemma by induction on m. For m=2 lemma is obvious. Next suppose that the result is true for $m=\ell-1$, then for $m=\ell$ the left member of (2.3) reduces to

$$\begin{split} &\frac{\cos^2 \lambda}{\ell^2} \{ (A-B)^2 (p-q)^2 + \sum_{k=1}^{\ell-2} [\{ (A-B)(p-q) - Bk \}^2 \\ &-k^2 \{ 1 + (1-B^2) \tan^2 \lambda \}] \prod_{j=0}^{k-1} u_j \\ &+ [\{ (A-B)(p-q) - B(\ell-1) \} - (\ell-1)^2 \{ 1 + (1-B^2) \tan^2 \lambda \}] \prod_{j=0}^{\ell-2} u_j \} \\ &= \frac{1}{\ell^2} \{ (\ell-1)^2 \prod_{j=0}^{\ell-2} u_j + \cos^2 \lambda [\{ (A-B)(p-q) - B(\ell-1) \}^2 \\ &- (\ell-1)^2 \{ 1 + (1-B^2) \tan^2 \lambda \}] \prod_{j=0}^{\ell-2} u_j \} \\ &= \frac{1}{\ell^2} [\{ (A-B)(p-q) - B(\ell-1) \}^2 \cos^2 \lambda + B^2 (\ell-1)^2 \sin^2 \lambda] \prod_{j=0}^{\ell-2} u_j \\ &= \prod_{j=0}^{\ell-1} u_j, \end{split}$$

showing that (2.3) is valid for $m = \ell$, and we are done.

3. Main Results

Theorem 3.1. If $f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \in S_p^{\lambda}(A, B, q)$, then

$$|a_{p+1}| \le (A-B)(p-q)\cos\lambda; \tag{3.1}$$

$$|a_{n+p}| \le \frac{(A-B)(p-q)\cos\lambda}{n}, n \ge 2,\tag{3.2}$$

for $\{(A-B)(p-q)-B\} \leq \sqrt{\{1+(1-B^2)\tan^2\lambda\}}$; and

$$|a_{n+p}| \le \prod_{j=0}^{n-1} u_j^{\frac{1}{2}}, n \ge 2$$
 (3.3)

for $\{(A-B)(p-q)-(n-1)B\} > (n-1)\sqrt{\{1+(1-B^2)\tan^2\lambda\}}$, where u_j is defined by (2.4) for $j=0,1,2,3,\cdots$. The bounds (3.1), (3.2) and (3.3) are sharp.

Proof. By (1.1) we have

$$\begin{split} &e^{i\lambda}\sec\lambda zf'(z)-p(1+i\tan\lambda)f(z)\\ &=[\{Bp+(A-B)(p-q)+iB\tan\lambda\}f(z)-Be^{i\lambda}\sec\lambda f'(z)]w(z) \end{split}$$

that is,

$$\begin{split} &(1+i\tan\lambda)\sum_{k=1}^{\infty}ka_{k+p}z^{k+p}\\ &=[\sum_{k=0}^{\infty}\{Bp+(A-B)(p-q)+iB\tan\lambda-B(k+p)e^{i\lambda}\sec\lambda\}a_{k+p}z^{k+p}]w(z), \end{split}$$

where $a_p = 1$. Since $w(z) = \sum_{k=1}^{\infty} b_k z^k$ and $d_{k+p} = \{(1+i \tan \lambda)k a_{k+p} - c_k\}$ we obtain for $n \geq 2$,

$$(1+i\tan\lambda)\sum_{k=1}^{n}ka_{k+p}z^{k+p} + \sum_{k=n+1}^{\infty}d_{k+p}z^{k+p} = [\sum_{k=0}^{n-1}\{Bp + (A-B)(p-q) + iB\tan\lambda - B(k+p)e^{i\lambda}\sec\lambda\}a_{k+p}z^{k+p}]w(z),$$
(3.4)

where $\sum_{k=n+1}^{\infty} d_{k+p} z^{k+p}$ converges in U. Since (3.4) has the form F(z) = G(z) w(z), where |w(z)| < 1, it follows that

$$\frac{1}{2\pi} \int_0^{2\pi} |F(re^{i\theta})|^2 d\theta \le \frac{1}{2\pi} \int_0^{2\pi} |G(re^{i\theta})|^2 d\theta \text{ for } 0 < r < 1.$$
 (3.5)

By substituting the values of F(z) and G(z) in (3.5) we have

$$\sec^{2} \lambda \sum_{k=1}^{n} k^{2} |a_{k+p}|^{2} r^{2(k+p)} + \sum_{k=n+1}^{\infty} |d_{k+p}|^{2} r^{2(k+p)}$$

$$\leq \sum_{k=0}^{n-1} [\{(A-B)(p-q) - Bk\}^{2} + B^{2}k^{2} \tan^{2} \lambda] |a_{k+p}|^{2} r^{2(k+p)}. (3.6)$$

By letting $r \to 1$ in (3.6) we conclude that

$$\sec^2 \lambda \sum_{k=1}^n k^2 (|a_{k+p}|^2 \le \sum_{k=0}^{n-1} [\{(A-B)(p-q) - Bk\}^2 + B^2 k^2 \tan^2 \lambda] |a_{k+p}|^2$$

which may be written as

$$|a_{n+p}| \leq \frac{\cos^2 \lambda}{n^2} [(A-B)^2 (p-q)^2 + \sum_{k=1}^{n-1} (\{(A-B)(p-q) - Bk\}^2 -k^2 \{1 + (1-B^2) \tan^2 \lambda\}) |a_{k+p}|^2] \text{ for } n = 1, 2, 3, \cdots. (3.7)$$

Inequality (3.1) follows from (3.7).

Further, $\{(A-B)(p-q)-B\} \leq \sqrt{\{1+(1-B^2)\tan^2\lambda\}}$ implies that $\{(A-B)(p-q)-(n-1)B\} \leq (n-1)\sqrt{\{1+(1-B^2)\tan^2\lambda\}}$, $n \geq 2$, and all the terms under the summation in (3.7) are non-positive and hence we conclude that

$$|a_{n+p}| \le \frac{(A-B)(p-q)\cos\lambda}{n}, \{(A-B)(p-q)-B\} \le \sqrt{\{1+(1-B^2)\tan^2\lambda\}}, n \ge 2.$$

The equality in (3.1) and (3.2) is attained for the function.

$$f(z) = \begin{cases} z^p (1 + Bz^{n-1})^{\frac{(A-B)(p-q)\cos \lambda e^{-i\lambda}}{B(n-1)}}, & B \neq 0 \\ z^p \exp\{\frac{[Ap-q(A-B)]z^{n-1}\cos \lambda e^{-i\lambda}}{(n-1)}\}, & B = 0. \end{cases}$$

Now we prove (3.3) when $\{(A-B)(p-q)-(n-1)B\} > (n-1)\sqrt{\{1+(1-B^2)\tan^2\lambda\}}, n \geq 2$. All the terms under the summation are positive. We prove the result by induction on n. Suppose (3.3) holds for n=m-1 where $m\geq 2$. Then for n=m we obtain from (3.7)

$$|a_{m+p}|^{2} \leq \frac{\cos^{2} \lambda}{m^{2}} [(A-B)^{2}(p-q)^{2} + \sum_{k=1}^{m-1} (\{(A-B)(p-q) - Bk\}^{2} - k^{2} \{1 + (1-B^{2}) \tan^{2} \lambda\}) |a_{k+p}|^{2}]$$

$$\leq \frac{\cos^{2} \lambda}{m^{2}} [(A-B)^{2}(p-q)^{2} + \sum_{k=1}^{m-1} (\{(A-B)(p-q) - Bk\}^{2} - k^{2} \{1 + (1-B^{2}) \tan^{2} \lambda\}) \prod_{j=0}^{k-1} U_{j}]$$

$$= \prod_{j=0}^{m-1} U_{j}, \text{ by lemma (2.3)}.$$

So (3.3) holds for all $n \geq 2$, and hence

$$|a_{n+p}| \le \prod_{j=0}^{n-1} U_j^{\frac{1}{2}}.$$

The equality in (3.3) is attained for the function

$$f(z) = \begin{cases} z^p (1 + Bz)^{\frac{(A-B)(p-q)\cos\lambda e^{-i\lambda}}{B}}, & B \neq 0\\ z^p \exp[\{Ap - q(A-B)\}z\cos\lambda e^{-i\lambda}], & B = 0. \end{cases}$$

This completes the proof of the theorem.

Remark. (1) Putting q = 0, p = 1 in Theorem (3.1), we get the result obtained by Dashrath and Shukla [3].

(2) Putting $q = 0, \lambda = 0, A = (2\alpha\beta/p) - 1, B = 2\beta - 1$ in Theorem (3.1), we get the result obtained by Aouf [1].

(3) Putting q = 0, $A = 1 - (2\alpha/p)$ and B = -1 in Theorem (3.1), we get the result obtained by Patil and Thakare [6].

Theorem 3.2. If $f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \in S_p^{\lambda}(A, B, q)$, then

(a) for any real number μ , we have

$$|a_{p+2} - \mu a_{p+1}^{2}| \leq \begin{cases} \frac{(A-B)(p-q)\cos\lambda}{2} [\cos\lambda\{(A-B)(p-q)(1-2\mu) - B\} + |B\sin\lambda|]}{\text{if } \mu \leq \frac{(A-B)(p-q)-(B+1)}{2(A-B)(p-q)},} \\ \frac{(A-B)(p-q)\cos\lambda}{2} [\cos\lambda + |B\sin\lambda|] \\ \text{if } \frac{(A-B)(p-q)-(B+1)}{2(p-q)(A-B)} \leq \mu \leq \frac{(A-B)(p-q)+(1-B)}{2(A-B)(p-q)},} \\ \frac{(A-B)(p-q)\cos\lambda}{2} [\cos\lambda\{(A-B)(p-q)(2\mu-1) + B\} + |B\sin\lambda|]}{\text{if } \mu \geq \frac{(p-q)(A-B)+(1-B)}{2(A-B)(p-q)},} \end{cases}$$

$$(3.8)$$

(b) for any complex number μ , we have

$$|a_{p+2} - \mu a_{p+1}^2| \le \frac{(p-q)(A-B)\cos\lambda}{2}\max\{1, |(p-q)(A-B)(2\mu-1)\cos\lambda + Be^{i\lambda}|\}$$
 (3.9)

The result is sharp for each μ either real or complex.

Proof. From (1.1) we have

$$\frac{p + \{Bp + (A-B)(p-q)\}w(z)}{1 + Bw(z)} = e^{i\lambda} \sec \lambda \frac{zf'(z)}{f(z)} - ip \tan \lambda, \quad (3.10)$$

where $w(z) = \sum_{k=1}^{\infty} b_k z^k$, w(0) = 0 and |w(z)| < 1 for $z \in U$. From (3.10) we obtain

$$w(z) = \frac{p(1+i\tan\lambda)f(z) - e^{i\lambda}\sec\lambda z f'(z)}{Be^{i\lambda}\sec\lambda z f'(z) - \{Bp + (A-B)(p-q) + iBp\tan\lambda\}f(z)}$$

$$= \frac{(1+i\tan\lambda)\sum_{k=1}^{\infty}ka_{k+p}z^{k}}{(A-B)(p-q) + \sum_{k=1}^{\infty}[(A-B)(p-q) - Bk - iBk\tan\lambda]a_{k+p}z^{k}}$$

$$= \frac{(1+i\tan\lambda)(A-B)(a_{p+1})z + \{2a_{p+2}(A-B)(p-q) - B-iB\tan\lambda(a_{p+1})\}z^{2} + \cdots\}.$$

Comparing the coefficients of z and z^2 on both sides, we have

$$\begin{array}{lcl} b_1 & = & \frac{(1+i\tan\lambda)}{(A-B)(p-q)}a_{p+1}, \\ \\ b_2 & = & \frac{(1+i\tan\lambda)}{(A-B)(p-q)}\{2a_{p+2} \\ \\ & - \frac{(A-B)(p-q)-B-iB\tan\lambda}{(A-B)(p-q)} \cdot a_{p+1}^2\}. \end{array}$$

Thus

$$a_{p+1} = \frac{(A-B)(p-q)}{e^{i\lambda} \sec \lambda} b_1$$

$$a_{p+2} = \frac{(A-B)(p-q)}{2e^{i\lambda} \sec \lambda} b_2$$

$$+ \frac{(A-B)(p-q) - B - iB \tan \lambda}{2(A-B)(p-q)} \cdot a_{p+1}^2.$$

Hence

$$|a_{p+2} - \mu a_{p+1}^{2}| = \frac{(A-B)(p-q)\cos\lambda}{2}|b_{2} - \{(A-B)(p-q)(2\mu-1) + Be^{i\lambda}\sec\lambda\} \cdot \frac{b_{1}^{2}}{e^{i\lambda}\sec\lambda}|.$$
(3.11)

(a) When μ is real, (3.11) becomes

$$|a_{p+2} - \mu a_{p+1}^2| \le \frac{(A-B)(p-q)\cos\lambda}{2}[|b_2| + |(A-B)(p-q)(2\mu-1)\cos\lambda + Be^{i\lambda}||b_1|^2]$$
(3.12)

$$|a_{p+2} - \mu a_{p+1}^2| \le \frac{(A-B)(p-q)\cos\lambda}{2} [1 + \{ (A-B)(p-q)(2\mu-1)\cos\lambda + Be^{i\lambda} | -1 \} |b_1|^2].$$
(3.13)

Again using Lemma 2.1 for $|b_1|$ in (3.13) we are led to

$$|a_{p+2} - \mu a_{p+1}^2| \le \frac{(A-B)(p-q)\cos\lambda}{2}[|(A-B)(p-q)(2\mu-1) + B|\cos\lambda + |B\sin\lambda|].$$
 (3.14)

Thus from (3.14) we can simply obtain the result of Theorem 3.2 as stated in (a) for various values of real μ .

(b) When μ is a complex number, (3.11) may be written as

$$|a_{p+2} - \mu a_{p+1}^2| = \frac{(A-B)(p-q)\cos\lambda}{2} |b_2$$

$$-\{\frac{(A-B)(p-q)(2\mu-1)\cos\lambda + Be^{i\lambda}|}{e^{i\lambda}}\}b_1^2|.$$
(3.15)

Using lemma 2.2 in (3.15) we obtain

$$|a_{p+2} - \mu a_{p+1}^2| \le \frac{|(A-B)(p-q)\cos\lambda}{2} \max\{1, |(A-B)(p-q)(2\mu-1)\cos\lambda + Be^{i\lambda}|\}$$

which is (3.9) in (b) of Theorem 3.2.

Remarks 1. Putting q = 0, $A = 1 - (2\alpha/p)$ and B = -1 in Theorem 3.2, we get the result obtained by Patil and Thakare [6].

2. Putting q = 0, p = 1 in Theorem 3.2, we get the result obtained by Dashrath and Shukla [3].

Theorem 3.3. If $g(z) = \frac{1}{z^p} + \sum_{n=0}^{\infty} a_n z^{n-p+1} \in T_p^{\lambda}(A, B, q)$ then $|b_n| \leq \frac{(A-B)(p-q)\cos \lambda}{(n+1)}$, for $n = 0, 1, 2, 3, \cdots$. The result is sharp.

Proof. The proof is based on the steps of the theorem (3.1). The following functions give sharp estimate

$$g(z) = \begin{cases} \frac{1}{z^p} (1 + Bz^{n+1})^{\frac{(B-A)(p-q)\cos\lambda e^{-i\lambda}}{B(n+1)}}, & B \neq 0\\ \frac{1}{z^p} \exp\left[\frac{\{(B-A)(p-q) - Bp\}z^{n+1}\cos\lambda e^{-i\lambda}}{n+1}\right], & B = 0. \end{cases}$$

Remark. Putting q = 0, p = 1 in Theorem 3.3, we get the result obtained by Dashrath and Shukla [3].

Acknowledgement. We are thankful to Dr. Vinod Kumar, Christ Church College, Kanpur for his help during the preparation of this paper.

References

[1] Aouf, M.K. (1988), On q-valent starlike functions of order α and type β , Bulletin of the Institute of Mathematics Academia Sinica, 16, 239-245.

- [2] Clunie, J. (1959), On meromorphic Schlicht functions, J. London. Math. Soc., 34, 215-216.
- [3] Dashrath and Shukla, S.L. (1983), Coefficient estimates for a subclass of spirallike functions, Indian J. pure appl. Math., 14(4), 431-439.
- [4] Keogh, F.R. and Merkes, E.P. (1969), A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8-12.
- [5] Nihari, Z. (1952), Conformal mapping, McGraw-Hill Book Co., Inc., New York.
- [6] Patil, D.A. and Thakare, N.K. (1979), On coefficient bounds of p-valent λ-spiral functions of order α, Indian J. pure appl. Math., 10(7), 842-853.

DEPARTMENT OF MATHEMATICS, JANTA COLLEGE, BAKEWAR 206 124, ETAWAH (U.P.), INDIA.