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SEMIGROUPS AND HIGHER ORDER 
GENERATORS 

El-Sayed A.M.A. 

The semigroup theory, the properties of its generators and its applieca
tions to the mixed problems and the initial value problems of partial dif
ferenti와 equations have been considered by several at빼ors (see for ex 
amples [1] , [2] ‘ [4] and [6]) . Here we wi\l show that if the operator A 
generates a contraction semigroup , then under certain conditions (which 
wi\l be stated) the operators A 2m, Am and εk=l A k generate analytic semÏ 

groups. Some examples of generators will be given to illustrate the results , 
and higher order equations of evolution will be considered 

1. Introduction 

Let X be a Hilbert space and A be a linear operator defined in X. Let 
us consider the equation of evolu tion 

du(t) 
피「 + Au(1) = f(t). 

n 
시
 

l ( 

It is known [8] that if the operator A is c\osed densely in X , then A gen
erates a contraction semigro때 {T(t) , t 즈 O} of bounded linear operators 
if and only if A and its adjoint A' are maximal dissipative. Now some 
definitions are \isted for later use 

Definition 1.1. Let A be linear operator in the Hilbert space X , and 
its domain is assumed to be dense in X . The operator A is said to be 
dissipative if Re(Au , u) ~ 0 or equivalently 

II(A - .\ )ull 으 Re시|씨 1 ， for all u E D(A) and Re.\ > O. 
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If Re(Au,u) 으 0, that is -A is dissipative, A is said to be accretive. A 
dissipative operator which extends a dissipative operator is called a dis 
sipative extension of A. An operator A is said to be maximal dissipative 
if its only dissipative extension is the operator A itself. Accerative exten
sions and maximal accretive operators are defined similarly. 

Definition 2. 1. Let T(t) for each t E [0, ∞) be a bounded linear operator 
in X , {T(t)} is called a semigroup of bounded operators if 

(1) T(t +s) = T(t) T(s) = T(s)T(t) , s ,t ~ 0 
(2) T(O) = 1 
(3) T(t) is strongly continuous in t E [0, ∞). 

It is known [8, p.53] that there exists real numbers M 즈 1 and ß such 
that 

IIT(t) 1I ::; Meβt (1.2) 

for all t > 0 
A semigroup {T(t)} is called a contraction semigroup if it satisfies 

IIT(t) 1I ::; 1. 

When A generates a semigroup satisfies (1.2) , we write A E G(X, M , ß) , 
and when the semigroup is a contraction semigroup we write A E G(X, 1,0) 

2. Higher Order Generators 

Here we assume that A E G(X, 1,0). Using the results of [3] , [5] and 
[8] we have the following lemmas. 

Lemma 2.1. 1f A E G(X , l ,O) , then D(A2m) is dense in X , m 
1,2,3, ... 
Proof Since A E G(X, 1, 이， it follows that A is closed densely deβned in 
X , and A and A * are maximal dissipative. Hence - A is maximal accretive 
and therefore it is of type (}, 1) (ιr notations see [8] p.32) from which we 
can deduce [8] that 

D(( _A)2m) = D(A2m ) is dense in X , where m = 1,2,3,. 

Lemma 2.2. Let A E G(X , 1, 이 . 1f A‘ (t) = A(t) or A*(t) = -A(t ), then 
A 2m is c/osed. 
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Proof Since (A2m)‘ = (A")2m = (土A)2m = A2m it follows that A2m is seJf

adjoi따in X , hence [3] it is closed operator in X. 

Theorem 2.1. Let A E G(X, 1,0) , if A" = -A then 

(_I) l+mA2m E G(X , 1,0) 

Proof From Lemmas (2.1) and (2.2) , the operator A2
m is closed denscJy 

deβned in X . Now Jet m be an odd positive integer, we have 

and so 

Re((A2m -, )u, u) = Re(Amu , A"mu) - Re-y llu112 

= Re(Amu , -Amu) - Rellull 2 

-IIAmu 1l
2 - Re-y llu11 2 

~ -Rellull2

’ 

II(A2m -,)ullllull ~ _Re((A2m -,) 으 _Re((A2m -, )u ,u) ~ Re,IIu ll 2 

l.e 

II(A2m -,)ull 즈 Re-y llull , R e-y > 0 (2.1 ) 

therefore A2m and its adjoint are dissipative, (rom which we can deduce 
[8] that they are maximaJ dissipative in X , and “len 

A2m E G(X, 1,0) 

SecondJy Jet m be an even positive integer, we have 

and so 

Re(A2m + ,)u, u) = Re터(Amuι‘μ’ A"mu 

= Re(Amu , Amu) + Re-y llul1 2 

= IIAmull 2 + Re-y llul1 2 

~ Re-y lluI1 2,Re-y> 0 

II(A 2m + ，)에 < Re-yllu l[ , 

(2.2) 

(2.3) 

therefore _ A2m and its adjoint are dissipative, from which we can deduce 
[8] that they are maximaJ dissipative, and then 

A2m E G(X, 1,0). (2 .4) 
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Combining (2.2) and (2 .4 ) we get 

(_1 )Hm A2ffl 
E G(X, l ,O) , 

where m = 1,2, 
Theorem 2.2. Let A E G(X, 1,0). [f A is self-adjoint, then 

_A2m E G(X , 1, 0) , and m = 1,2, '" 

(2.5) 

Proof From Lemmas (2.1) and (2.2) , A2m is closed densely defined in X. 
Now sin ce 

and so 

Re((A2m + ,)u , u) = Re(Afflu, A*mu ) + Rql l띠 1 2 

Re(A"‘u, Amu) + Rq llull2 

2 Rqllul12 , Rq > 0 

II( A2m + ,)u 1l 2 Reγ lI ull (2.6) 

It follows that _ A2
m and its adjoint are dissipative and they are maximal 

dissipative in X (cf. [8]). Hence 

_ A2m E G(X , 1, 0) , where m = 1,2,3 

which completes the prove 

Theorem 2.3. Let A E G(X, 1,0) and A ‘ = A . /f A has a bounded 
inverse, then 

_ A
ffl 

E G(X ， l ， 이 m = 1,2,3 ... 

Proof Since Am is self-adjoint and has a bounded inverse, it follows that 

(A2mu, u) = (AfflU , AfflU) = IIAfflUll 2 > 0 

for nonvanishing u E D(Am) . So A2ffl is st rictly positive operator, hence 
A2ffl has a strictly pos itive square root Affl (cf깨) i. e. 

(A mu, u) > 0 for u E D(A
ffl

). (2. 7) 

Now si nce Am is the square root of A2m, it follows from Lemmas (2 .1) and 
(2.2) (and P roposit ion 2.3.1 of [8]) that Am is closed densely defined in 
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X , with domain D = D(Arn). From (2.7) Am and its adjoint are accretive 
in X , consequently _Arn and its adjoint are dissipative. Hence they are 
maximal djssipative and therefore 

_Arn E G(X, 1,0). 

Corollary 2.1. If the assumptions of Theorem (2.3) are satis.껴ed， then 

L=-ε Ak E G(X, 1,0). 

Proof From Th∞rem (2.3) , _Arn E G(X, 1,0) , 80 it is of type (~， 1) (cf 
[8]). Also Am has a bounded inverse, so (by Proposition 2.3.1 of [8]). 

D(a Q
) :) D(Aβ) ， for 0 < a < ß 

Now for the operator L , take D(L) = D(Am), and since 

(Lu ,u) =-ε(Aku ， 11.) ~ 0 

it follows that L and L* are dissipative, consequently they are maximal 
dissipative and 

L E G(X,l ,O). 

Corollary 2.2 . If B E G(X,l ,O) , then the semigroup generated by B 
is analytic. So the semigroups(contraction) in Theorems (2.1), (2.2) and 
β 3) and Corol/ary (2.1) aπ anaωtic. 

Proof lf B E G(X, 1,0) , then -B and its adjoint are maximal accretive, 
from which we deduce [8] that - B is of type (~， 1). So (Theorem 3.3.1 of 
[8]) the operator B generates an analytic semigro때. From the uniqueness 
of the semjgroup generated by B , we get the resu1t. 

3. Applications 

Consider the equation of evolution 

du(t) ~ 
고t 등 Aku(t) = f(t) (3.1) 
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with the initial data 

u(O) = uo. (3.2) 

From our results here and as in the case of first order generators, we can 
easely prove the following theorem. 

Theorem 3.1. Let A satisfy the assumptions of Theorem (2.3). Ifuo E X 
and f(t) E C(X,I), then the initia/ va/ue prob/em (3.1) and (3.잉 has a 
unique so/ution u(t) E C(X,I), given by 

u(t) = T(t)uo + 담(t - s)f(s)ds , (3.3) 

ψith the following properties (for t > 0). 
(1) 벨 E C(X,I), and 

du(t) 1I ..... C 1L . 11 , 11 rt ..l\1I , C f ‘ 
II --，~" II ~ ';:II Uo II + II f(t) 1I +';: I IIf(s) lI ds (3.4) dt II-t ll --VII 11 -' \-111 tJo 

(2) u(t) E D(Am) , and 

11 효 A앙kU테떼페떼떼u미배폐써빼(“떠씨씨t)씨씨)1애11“|언5 ;만11뻐배빼매삐삐11냐+ c 1' llf(μ띠싸쩨쩨f(파쩨쩨(μ네씨빼S야셰) 1 (3.5) 

ψhere {T(t)} is the semigroup (ana/ytic) genemted by ε~， Ak , and c 
is a positive constant. 

Examples of generators 
(1) Let ω be a bounded open subset of R,., with boundary Ôω ， and 

define the operator A as D(A) = {u E L2 (ω) : 6.u E L2“(‘μω‘μ} )，내u배i Au = -6.u. It is proved in [1] that A E G(X, l , 이 and the operator A 
has a bounded inverse. So it satisfies the assumptions of Theorem (2.3) 
Then the operator - εk;1 (_6. )k generates an analytic semigroup. Now 
consider the mixed problem 

ôu(x, t) ;'-
7「 - §(-A)ku(x, t) = f(z,t) ,z e ω， t > 0 (3.6) 

u(x ,t) = O,x E Ô，ω， t > 0 (3.7) 

u(x ,O) = uo(x) ,x E ω (3.8) 
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where uo(x) E L2 (ω) and f(x , t) E C(L2 (ω) ，1). Applying Theorem (3.1) 
to the mixed problem (3.6) , (3.7) and (3.8) , we deduce that this mixed 
problem has a unique solution 

u(x , t) E Wim (ω) 

and continuous with respect to t E 1. Also this solution satisfies (3 .4) and 
(3.5). Now from Sobolev’s embedding Theorem [7] we have the following 
corollary. 

Corollary 3.1. 1f 2m > 융 + k , theη the solution of the mixed pmblem 
(3.6), (3 η aηd (3.8) 

u(x , t) E Ck (ω) ， 

aπd 빨꾀 exists in the 떼al seηce 
(2) Let X = Lp(Rn ), 1 < p < x , put G(t, x) = (2)감tn exp( -lxl 2 /4t) , 

for each t > 0 and each x E Rn. The contraction semigro때 {T(t)} deβned 

bν 

T(t)μ(z) = 4n G(t, I - y)u(y)dy 

has the generator given by Au = -6.u , with domain D(A) W;(Rn) , 
1 < p < ∞， and A ‘ A. 80 this operator satisfies the assumptions of 
Theorem β.잉 ， thereJore _A2m = _6.2m generates an ana 

(β에3야) Let the ηmatrηices aj(t) ,
’ 

Jor j = 1,2,"', n and t > 0, be Hermitiaπ. 
For each u = (Ul ,U2 ,"'UN)' E L2(Rn)N = X , defiηe 

A싸 =효 aj(t) (3.9) 

with domain D(A) = {u E X : A(t)u E X}CWj(Rn)N. 1t is knoψη [8J 
that Jor each ß > 0 the operator 土A(t) E G(X, 1, ß) and A* = -A. 80 
this operator (3.9) satisfies the assumptions oJ theorem (2.1), thereJore 
(_l)m+l A2m(t) generates an analyiic semigrou 
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