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SEMIGROUPS AND HIGHER ORDER
GENERATORS

El-Sayed A.M.A.

The semigroup theory, the properties of its generators and its applieca-
tions to the mixed problems and the initial value problems of partial dif-
ferential equations have been considered by several authors (see for ex-
amples (1], [2], [4] and [6]). Here we will show that if the operator A
generates a contraction semigroup, then under certain conditions (which
will be stated) the operators A?™, A™ and .7, A* generate analytic semi-
groups. Some examples of generators will be given to illustrate the results,
and higher order equations of evolution will be considered.

1. Introduction

Let X be a Hilbert space and A be a linear operator defined in X. Let
us consider the equation of evolution

du(t) B
T+ Ault) = f(2). (1.1)

It is known [8] that if the operator A is closed densely in X, then A gen-
erates a contraction semigroup {7T'(¢),¢ > 0} of bounded linear operators
if and only if A and its adjoint A* are maximal dissipative. Now some
definitions are listed for later use.

Definition 1.1. Let A be linear operator in the Hilbert space X, and
its domain is assumed to be dense in X. The operator A is said to be
dissipative if Re(Au,u) < 0 or equivalently

(A — X)u|| > ReAlu||, for all w € D(A) and ReA > 0.

Received May 25,1990
Revised November 7,1990

79



80 El-Sayed A.M.A.

If Re(Au,u) > 0, that is —A is dissipative, A is said to be accretive. A
dissipative operator which extends a dissipative operator is called a dis-
sipative extension of A. An operator A is said to be maximal dissipative
if its only dissipative extension is the operator A itself. Accerative exten-
sions and maximal accretive operators are defined similarly.

Definition 2.1. Let 7'(t) for each t € [0, 00) be a bounded linear operator
in X, {T(t)} is called a semigroup of bounded operators if

(1) T({t+s)=T() T(s)=T(s)T(t), s,t=>0

(2) T(0)=1

(3) T(t) is strongly continuous in ¢ € [0, c0).
It is known [8, p.53] that there exists real numbers M > 1 and § such
that

1T < Me™ (1.2)

forallt > 0.
A semigroup {T'(t)} is called a contraction semigroup if it satisfies

1Tl < 1.

When A generates a semigroup satisfies (1.2), we write A € G(X, M, 3),
and when the semigroup is a contraction semigroup we write A € G( X, 1,0).

2. Higher Order Generators
Here we assume that A € G(X,1,0). Using the results of [3], [5] and

[8] we have the following lemmas.

Lemma 2.1. If A € G(X,1,0), then D(A™) is dense in X, m =
188 e

Proof. Since A € G(X,1,0), it follows that A is closed densely defined in

X, and A and A* are maximal dissipative. Hence — A is maximal accretive
and therefore it is of type (3,1) (for notations see [8] p.32) from which we
can deduce [8] that

D((—A)*™) = D(A*™) is dense in X, where m =1,2,3,---

Lemma 2.2. Let A € G(X,1,0). If A*(t) = A(t) or A*(t) = —A(t), then

AP s closed.
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Proof. Since (A*™)* = (A*)*™ = (£A)*™ = A™ it follows that A*™ is self-
adjoint. Now A?™ is self-adjoint and densely (from Lemma (2.1)) defined
in X, hence [3] it is closed operator in X.

Theorem 2.1. Let A € G(X,1,0), if A* = —A then
(=)™ A™ € G(X,1,0)

Proof. From Lemmas (2.1) and (2.2), the operator A?™ is closed densely
defined in X. Now let m be an odd positive integer, we have

Re((A™ — v)u,u) Re(A™u, A"™u) — Revy||ul|®
Re(A™u, —A™u) — Re|ul*
—[|A™u|* — Rey|lul*

—Rellu|[%,

IA

and so
1(A*™ — y)ull||ul| > —Re((A*™ — 7) > —Re((A*™ — y)u,u) > Rey||ul|?
l.e.
1(A™ — 3)ull > Renlul, Rey > 0 (21)

therefore A*™ and its adjoint are dissipative, from which we can deduce
[8] that they are maximal dissipative in X, and then

A™ € G(X,1,0) (2.2)
Secondly let m be an even positive integer, we have

Re(A™ + y)u,u) Re(A™u, A"™u) + Revl||ul|?
Re(A™u, A™u) + Rev||u||®
IA™ u]* + Rel|ul|*

> Req||u|?* Rey >0

and so

I(A®™ + y)ull < Rexllull, (2.3)

therefore —A?™ and its adjoint are dissipative, from which we can deduce
[8] that they are maximal dissipative, and then

— A™ € G(X,1,0). (2.4)
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Combining (2.2) and (2.4) we get
(-1)*™mA™ e G(X,1,0), (2.5)
where m =1,2,--.
Theorem 2.2. Let A € G(X,1,0). If A is self-adjoint, then
—A™ € G(X,1,0), andm =1,2,---

Proof. From Lemmas (2.1) and (2.2), A?™ is closed densely defined in X.
Now since

Re((A™ +7)u,u) = Re(A™u, A""u) + Reyl|u||?
Re(A™u, A™u) + Rey||ul|?

> Reyllu|®, Rey >0

and so
I(A™ + 7)ull > Rey||ull (2-6)

It follows that —A*™ and its adjoint are dissipative and they are maximal
dissipative in X (cf. [8]). Hence

—A*™ ¢ G(X,1,0), wherem =1,2,3---

which completes the prove.

Theorem 2.3. Let A € G(X,1,0) and A* = A. If A has a bounded
inverse, then

~A™ € G(X,1,0), m=1,2,3---

Proof. Since A™ is self-adjoint and has a bounded inverse, it follows that
(A*™u,u) = (A™u, A™u) = ||A™u||* > 0

for nonvanishing u € D(A™). So A®™ is strictly positive operator, hence
A™ has a strictly positive square root A™ (cf.[7]) i.e.

(A™u,u) > 0 for u € D(A™). (2.7)

Now since A™ is the square root of A*™, it follows from Lemmas (2.1) and
(2.2) (and Proposition 2.3.1 of [8]) that A™ is closed densely defined in
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X, with domain D = D(A™). From (2.7) A™ and its adjoint are accretive
in X, consequently —A™ and its adjoint are dissipative. Hence they are
maximal dissipative and therefore

—-A™ € G(X,1,0).

Corollary 2.1. If the assumptions of Theorem (2.3) are satisfied, then

-y AF e G(X,1,0).
k=1

Proof. From Theorem (2.3), —A™ € G(X,1,0), so it is of type (5,1) (cf
[8]). Also A™ has a bounded inverse, so (by Proposition 2.3.1 of [8]).

D(a®) D D(AP), for 0 < a < B.
Now for the operator L, take D(L) = D(A™), and since

(Lu,u) Z(A"u u)

it follows that L and L* are dissipative, consequently they are maximal
dissipative and

L€ G(X,1,0).

Corollary 2.2. If B € G(X,1,0), then the semigroup generated by B
is analytic. So the semigroups(contraction) in Theorems (2.1), (2.2) and
(2.3) and Corollary (2.1) are analytic.

Proof. If B € G(X,1,0), then —B and its adjoint are maximal accretive,
from which we deduce [8] that —B is of type (3,1). So (Theorem 3.3.1 of
[8]) the operator B generates an analytic semigroup. From the uniqueness
of the semigroup generated by B, we get the result.

3. Applications
Consider the equation of evolution

d’;ﬁ” _ 3 Aku(t) = f(1) (3.1)

k=1
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with the initial data
u(0) = uo. (3-2)

From our results here and as in the case of first order generators, we can
easely prove the following theorem.

Theorem 3.1. Let A satisfy the assumptions of Theorem (2.3). Ifuq € X
and f(t) € C(X,I), then the initial value problem (3.1) and (3.2) has a
unique solution u(t) € C(X,I), given by

u(t) =T(tyuo + | Tt = 5) f(s)ds, (3.3)

with the following properties (fort > 0).
(1) 24 ¢ ¢(xX,1), and

du(t)

1220 < Sloll + 151 +5 [ 17l (3.4)

< t
(2) u(t) € D(A™), and
13 Al < Sl +e [ 17Mds 39)
k=1

where {T(t)} is the semigroup (analytic) generated by — Y1, A*, and c
ts a positive constant.

Examples of generators

(1) Let w be a bounded open subset of R,, with boundary dw, and
define the operator A as D(A) = {u € Ly(w) : Au € Ly(w), uls, = 0} and
Au = —Au. It is proved in [1] that A € G(X,1,0) and the operator A
has a bounded inverse. So it satisfies the assumptions of Theorem (2.3).
Then the operator — Y1 ,(—A)* generates an analytic semigroup. Now
consider the mixed problem

au

i —A)*u(z,t) = f(z,1),z €w,t >0 (3.6)

u(z,t) =0,z € Ow,t >0 (3.7)
u(z,0) = uo(z),z € w (3.8)
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where ug(z) € Ly(w) and f(z,t) € C(Ly(w), ). Applying Theorem (3.1)
to the mixed problem (3.6), (3.7) and (3.8), we deduce that this mixed
problem has a unique solution

u(z,t) € Wi™(w)

and continuous with respect to t € I. Also this solution satisfies (3.4) and
(3.5). Now from Sobolev’s embedding Theorem [7] we have the following
corollary.

Corollary 3.1. If 2m > 7 + k, then the solution of the mized problem
(3.6), (3.7) and (3.8)
u(z,t) € CHw),

and a—“é‘:—'tl exists in the usual sence.

(2) Let X = L,(R,), 1 < p <z, put G(t,z) = (2v/'7t) " exp(—|z|*/41),
for eacht > 0 and each x € R,,. The contraction semigroup {T(t)} defined
by

T(t)u(z) = / G(t, 2 — y)uly)dy

e

has the generator given by Au = —Au, with domain D(A) = W2(R,),
1 < p< oo, and A* = A. So this operator satisfies the assumptions of
Theorem (2.2), therefore —A?™ = —A®™ generates an analytic semigroup.

(3) Let the matrices a;(t), for y =1,2,--+,n and t > 0, be Hermitian.
For each u = (uy,uy, - uy)t € Ly(R,)N = X, define

A =3 o (03 (3.9)

i=1

with domain D(A) = {u € X : A(t)u € X}CWHR,)N. It is known [8]
that for each g > 0 the operator £ A(1) € G(X,1,8) and A* = —A. So
this operator (3.9) satisfies the assumptions of theorem (2.1), therefore
(=1)™+1 A?™(¢) generates an analytic semigroup.
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