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SEMIGROUPS AND HIGHER ORDER 
GENERATORS 

El-Sayed A.M.A. 

The semigroup theory, the properties of its generators and its applieca­
tions to the mixed problems and the initial value problems of partial dif­
ferenti와 equations have been considered by several at빼ors (see for ex 
amples [1] , [2] ‘ [4] and [6]) . Here we wi\l show that if the operator A 
generates a contraction semigroup , then under certain conditions (which 
wi\l be stated) the operators A 2m, Am and εk=l A k generate analytic semÏ 

groups. Some examples of generators will be given to illustrate the results , 
and higher order equations of evolution will be considered 

1. Introduction 

Let X be a Hilbert space and A be a linear operator defined in X. Let 
us consider the equation of evolu tion 

du(t) 
피「 + Au(1) = f(t). 

n 
시
 

l ( 

It is known [8] that if the operator A is c\osed densely in X , then A gen­
erates a contraction semigro때 {T(t) , t 즈 O} of bounded linear operators 
if and only if A and its adjoint A' are maximal dissipative. Now some 
definitions are \isted for later use 

Definition 1.1. Let A be linear operator in the Hilbert space X , and 
its domain is assumed to be dense in X . The operator A is said to be 
dissipative if Re(Au , u) ~ 0 or equivalently 

II(A - .\ )ull 으 Re시|씨 1 ， for all u E D(A) and Re.\ > O. 
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If Re(Au,u) 으 0, that is -A is dissipative, A is said to be accretive. A 
dissipative operator which extends a dissipative operator is called a dis 
sipative extension of A. An operator A is said to be maximal dissipative 
if its only dissipative extension is the operator A itself. Accerative exten­
sions and maximal accretive operators are defined similarly. 

Definition 2. 1. Let T(t) for each t E [0, ∞) be a bounded linear operator 
in X , {T(t)} is called a semigroup of bounded operators if 

(1) T(t +s) = T(t) T(s) = T(s)T(t) , s ,t ~ 0 
(2) T(O) = 1 
(3) T(t) is strongly continuous in t E [0, ∞). 

It is known [8, p.53] that there exists real numbers M 즈 1 and ß such 
that 

IIT(t) 1I ::; Meβt (1.2) 

for all t > 0 
A semigroup {T(t)} is called a contraction semigroup if it satisfies 

IIT(t) 1I ::; 1. 

When A generates a semigroup satisfies (1.2) , we write A E G(X, M , ß) , 
and when the semigroup is a contraction semigroup we write A E G(X, 1,0) 

2. Higher Order Generators 

Here we assume that A E G(X, 1,0). Using the results of [3] , [5] and 
[8] we have the following lemmas. 

Lemma 2.1. 1f A E G(X , l ,O) , then D(A2m) is dense in X , m 
1,2,3, ... 
Proof Since A E G(X, 1, 이， it follows that A is closed densely deβned in 
X , and A and A * are maximal dissipative. Hence - A is maximal accretive 
and therefore it is of type (}, 1) (ιr notations see [8] p.32) from which we 
can deduce [8] that 

D(( _A)2m) = D(A2m ) is dense in X , where m = 1,2,3,. 

Lemma 2.2. Let A E G(X , 1, 이 . 1f A‘ (t) = A(t) or A*(t) = -A(t ), then 
A 2m is c/osed. 
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Proof Since (A2m)‘ = (A")2m = (土A)2m = A2m it follows that A2m is seJf­

adjoi따in X , hence [3] it is closed operator in X. 

Theorem 2.1. Let A E G(X, 1,0) , if A" = -A then 

(_I) l+mA2m E G(X , 1,0) 

Proof From Lemmas (2.1) and (2.2) , the operator A2
m is closed denscJy 

deβned in X . Now Jet m be an odd positive integer, we have 

and so 

Re((A2m -, )u, u) = Re(Amu , A"mu) - Re-y llu112 

= Re(Amu , -Amu) - Rellull 2 

-IIAmu 1l
2 - Re-y llu11 2 

~ -Rellull2

’ 

II(A2m -,)ullllull ~ _Re((A2m -,) 으 _Re((A2m -, )u ,u) ~ Re,IIu ll 2 

l.e 

II(A2m -,)ull 즈 Re-y llull , R e-y > 0 (2.1 ) 

therefore A2m and its adjoint are dissipative, (rom which we can deduce 
[8] that they are maximaJ dissipative in X , and “len 

A2m E G(X, 1,0) 

SecondJy Jet m be an even positive integer, we have 

and so 

Re(A2m + ,)u, u) = Re터(Amuι‘μ’ A"mu 

= Re(Amu , Amu) + Re-y llul1 2 

= IIAmull 2 + Re-y llul1 2 

~ Re-y lluI1 2,Re-y> 0 

II(A 2m + ，)에 < Re-yllu l[ , 

(2.2) 

(2.3) 

therefore _ A2m and its adjoint are dissipative, from which we can deduce 
[8] that they are maximaJ dissipative, and then 

A2m E G(X, 1,0). (2 .4) 
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Combining (2.2) and (2 .4 ) we get 

(_1 )Hm A2ffl 
E G(X, l ,O) , 

where m = 1,2, 
Theorem 2.2. Let A E G(X, 1,0). [f A is self-adjoint, then 

_A2m E G(X , 1, 0) , and m = 1,2, '" 

(2.5) 

Proof From Lemmas (2.1) and (2.2) , A2m is closed densely defined in X. 
Now sin ce 

and so 

Re((A2m + ,)u , u) = Re(Afflu, A*mu ) + Rql l띠 1 2 

Re(A"‘u, Amu) + Rq llull2 

2 Rqllul12 , Rq > 0 

II( A2m + ,)u 1l 2 Reγ lI ull (2.6) 

It follows that _ A2
m and its adjoint are dissipative and they are maximal 

dissipative in X (cf. [8]). Hence 

_ A2m E G(X , 1, 0) , where m = 1,2,3 

which completes the prove 

Theorem 2.3. Let A E G(X, 1,0) and A ‘ = A . /f A has a bounded 
inverse, then 

_ A
ffl 

E G(X ， l ， 이 m = 1,2,3 ... 

Proof Since Am is self-adjoint and has a bounded inverse, it follows that 

(A2mu, u) = (AfflU , AfflU) = IIAfflUll 2 > 0 

for nonvanishing u E D(Am) . So A2ffl is st rictly positive operator, hence 
A2ffl has a strictly pos itive square root Affl (cf깨) i. e. 

(A mu, u) > 0 for u E D(A
ffl

). (2. 7) 

Now si nce Am is the square root of A2m, it follows from Lemmas (2 .1) and 
(2.2) (and P roposit ion 2.3.1 of [8]) that Am is closed densely defined in 
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X , with domain D = D(Arn). From (2.7) Am and its adjoint are accretive 
in X , consequently _Arn and its adjoint are dissipative. Hence they are 
maximal djssipative and therefore 

_Arn E G(X, 1,0). 

Corollary 2.1. If the assumptions of Theorem (2.3) are satis.껴ed， then 

L=-ε Ak E G(X, 1,0). 

Proof From Th∞rem (2.3) , _Arn E G(X, 1,0) , 80 it is of type (~， 1) (cf 
[8]). Also Am has a bounded inverse, so (by Proposition 2.3.1 of [8]). 

D(a Q
) :) D(Aβ) ， for 0 < a < ß 

Now for the operator L , take D(L) = D(Am), and since 

(Lu ,u) =-ε(Aku ， 11.) ~ 0 

it follows that L and L* are dissipative, consequently they are maximal 
dissipative and 

L E G(X,l ,O). 

Corollary 2.2 . If B E G(X,l ,O) , then the semigroup generated by B 
is analytic. So the semigroups(contraction) in Theorems (2.1), (2.2) and 
β 3) and Corol/ary (2.1) aπ anaωtic. 

Proof lf B E G(X, 1,0) , then -B and its adjoint are maximal accretive, 
from which we deduce [8] that - B is of type (~， 1). So (Theorem 3.3.1 of 
[8]) the operator B generates an analytic semigro때. From the uniqueness 
of the semjgroup generated by B , we get the resu1t. 

3. Applications 

Consider the equation of evolution 

du(t) ~ 
고t 등 Aku(t) = f(t) (3.1) 
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with the initial data 

u(O) = uo. (3.2) 

From our results here and as in the case of first order generators, we can 
easely prove the following theorem. 

Theorem 3.1. Let A satisfy the assumptions of Theorem (2.3). Ifuo E X 
and f(t) E C(X,I), then the initia/ va/ue prob/em (3.1) and (3.잉 has a 
unique so/ution u(t) E C(X,I), given by 

u(t) = T(t)uo + 담(t - s)f(s)ds , (3.3) 

ψith the following properties (for t > 0). 
(1) 벨 E C(X,I), and 

du(t) 1I ..... C 1L . 11 , 11 rt ..l\1I , C f ‘ 
II --，~" II ~ ';:II Uo II + II f(t) 1I +';: I IIf(s) lI ds (3.4) dt II-t ll --VII 11 -' \-111 tJo 

(2) u(t) E D(Am) , and 

11 효 A앙kU테떼페떼떼u미배폐써빼(“떠씨씨t)씨씨)1애11“|언5 ;만11뻐배빼매삐삐11냐+ c 1' llf(μ띠싸쩨쩨f(파쩨쩨(μ네씨빼S야셰) 1 (3.5) 

ψhere {T(t)} is the semigroup (ana/ytic) genemted by ε~， Ak , and c 
is a positive constant. 

Examples of generators 
(1) Let ω be a bounded open subset of R,., with boundary Ôω ， and 

define the operator A as D(A) = {u E L2 (ω) : 6.u E L2“(‘μω‘μ} )，내u배i Au = -6.u. It is proved in [1] that A E G(X, l , 이 and the operator A 
has a bounded inverse. So it satisfies the assumptions of Theorem (2.3) 
Then the operator - εk;1 (_6. )k generates an analytic semigroup. Now 
consider the mixed problem 

ôu(x, t) ;'-
7「 - §(-A)ku(x, t) = f(z,t) ,z e ω， t > 0 (3.6) 

u(x ,t) = O,x E Ô，ω， t > 0 (3.7) 

u(x ,O) = uo(x) ,x E ω (3.8) 
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where uo(x) E L2 (ω) and f(x , t) E C(L2 (ω) ，1). Applying Theorem (3.1) 
to the mixed problem (3.6) , (3.7) and (3.8) , we deduce that this mixed 
problem has a unique solution 

u(x , t) E Wim (ω) 

and continuous with respect to t E 1. Also this solution satisfies (3 .4) and 
(3.5). Now from Sobolev’s embedding Theorem [7] we have the following 
corollary. 

Corollary 3.1. 1f 2m > 융 + k , theη the solution of the mixed pmblem 
(3.6), (3 η aηd (3.8) 

u(x , t) E Ck (ω) ， 

aπd 빨꾀 exists in the 떼al seηce 
(2) Let X = Lp(Rn ), 1 < p < x , put G(t, x) = (2)감tn exp( -lxl 2 /4t) , 

for each t > 0 and each x E Rn. The contraction semigro때 {T(t)} deβned 

bν 

T(t)μ(z) = 4n G(t, I - y)u(y)dy 

has the generator given by Au = -6.u , with domain D(A) W;(Rn) , 
1 < p < ∞， and A ‘ A. 80 this operator satisfies the assumptions of 
Theorem β.잉 ， thereJore _A2m = _6.2m generates an ana 

(β에3야) Let the ηmatrηices aj(t) ,
’ 

Jor j = 1,2,"', n and t > 0, be Hermitiaπ. 
For each u = (Ul ,U2 ,"'UN)' E L2(Rn)N = X , defiηe 

A싸 =효 aj(t) (3.9) 

with domain D(A) = {u E X : A(t)u E X}CWj(Rn)N. 1t is knoψη [8J 
that Jor each ß > 0 the operator 土A(t) E G(X, 1, ß) and A* = -A. 80 
this operator (3.9) satisfies the assumptions oJ theorem (2.1), thereJore 
(_l)m+l A2m(t) generates an analyiic semigrou 
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