ON THE LIMIT-POINT CLASSIFICATION OF A WEIGHTED FOURTH ORDER DIFFERENTIAL EXPRESSIONS

M.F. EL-Zayat

Conditions are given to ensure that a weighted fourth order differential equation on a half-line is in the case of the limit-point at infinity. These conditions are in the form of limitations on the growth of these coefficients.

1. Introduction

The differential expression considered in this paper is:

$$
\begin{equation*}
M[y] \equiv\left(P_{0}(x) y^{(2)}\right)^{(2)}-\left(P_{1}(x) y^{\prime}\right)^{\prime}+P_{2}(x) y=\lambda h(x) y \tag{1.1}
\end{equation*}
$$

where λ is a complex parameter, will be regular at all points of $[0, \infty]$ but has a singular point at infinity, see (3).

It is assumed the coefficients $P_{0}(x), P_{1}(x)$ and $P_{2}(x)$ satisfy the following basic conditions;
i- $P_{2}(x)$ is locally Lebesgue-integrable on $[0, X]$, for all $X>0$.
ii- $P_{0}^{\prime}(x)$ and $P_{1}(x)$ are absolutely continuous on $[0, X]$, for all $X>0$.
iii- $P_{0}(x)>0$ and $P_{1}(x) \geq 0$, for all $x \in[0, \infty]$. The weight function $h(x)$ satisfies.
iv- $h^{\prime}(x)$ is continuous on $[0, \infty]$ and $h(x)>0$.
We introduce the Hilbert space $L_{h}^{2}[a, \infty)$ of complex valued measurable functions $f(x)$ such that:

$$
\int_{a}^{\infty}|f(x)|^{2} h(x) d x
$$

[^0]converges and the inner product of $f(x)$ and $g(x))$ in $L_{h}^{2}[a, \infty)$ is defined by
$$
\left(f(x), g(x)=\int_{a}^{\infty} f(x) \overline{g(x)} h(x) d x\right.
$$

Classical results give that the number m of linearly independent $L_{h}^{2}[a, \infty)$ solutions of $M(y)=\lambda h y$ is the same for all nonreal λ and satisfy the inequality $2 \leq m \leq 4$.

When $m=2$, the operator is said to be in the limit-point case at infinity.

2. System of Differential Equations

Through this section, we assume ρ_{0}, ρ_{1} are positive functions on $[a, \infty)$, with second continuous derivatives and λ denotes a complex number with $R e \lambda=0$, we consider the conditions:

$$
\begin{equation*}
\left.\frac{P_{1}(x) \rho_{1}^{2}}{P_{0}(x) \rho_{0}^{2} h^{\frac{1}{2}}}=0(1) ; \frac{\rho_{1}}{\rho_{0} h^{\frac{1}{4}}} \frac{\rho_{0}^{\prime}}{\rho_{0}}+\frac{\rho_{1}^{\prime}}{\rho_{1}}+\frac{P_{0}^{\prime}}{P_{0}}+\frac{h^{\prime}}{h}\right]=0(1) \text { as } x \rightarrow \infty \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{-P_{2}(x) \rho_{1}^{4}}{P_{0}(x) \rho_{0}^{4} h} \leq k, \text { for some } K>0 \tag{2.2}
\end{equation*}
$$

For (1.1), the quasi-derivatives $y^{[i]}$ are defined by:

$$
\begin{array}{r}
y^{[0]}=y ; y^{[1]}=y^{\prime}, \quad y^{[2]}=P_{0}(x) y^{\prime \prime} \\
y^{[3]}=P_{1}(x) y^{\prime}-\left(P_{0} y^{\prime \prime}\right)^{\prime} \text { and } y^{[4]}=\lambda h y \tag{2.3}
\end{array}
$$

The equation $M(y)=\lambda h y$, has the vector formulation:

$$
\begin{equation*}
Y^{\prime}=A Y \tag{2.4}
\end{equation*}
$$

where

$$
Y=\left[\begin{array}{c}
y \\
y^{\prime} \\
y^{[2]} \\
y^{[3]}
\end{array}\right] \quad \text { and } A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 1 & 1 / P_{0} & 0 \\
0 & P_{1} & 0 & -1 \\
\left(P_{2}-\lambda h\right) & 0 & 0 & 0
\end{array}\right]
$$

We transform y by the transformation $W=L Y$, where L is the diagonal matrix.

$$
L=\text { diagonal }\left\{\rho_{0} h^{\frac{3}{8}}, \rho_{1} h^{\frac{1}{8}},\left(\rho_{1}^{2} / \rho_{0} P_{0} h^{\frac{1}{8}}\right),\left(\rho_{1}^{3} / \rho_{0}^{2} P_{0} h^{\frac{3}{8}}\right)\right\}
$$

Clearly, the vector $W=\left[w_{1}, w_{2}, w_{3}, w_{4}\right]^{T}$ is;

$$
\begin{equation*}
W=\left[\left(\rho_{0} h^{\frac{3}{8}} y,\left(\rho_{1} h^{\frac{1}{8}}\right) y^{\prime},\left(\rho_{1}^{2} / \rho_{0} P_{0} h^{\frac{1}{8}}\right) y^{[2]},\left(\rho_{1}^{3} / \dot{\rho}_{0}^{2} P_{0} h^{\frac{3}{8}}\right) y^{[3]}\right]^{T}\right. \tag{2.5}
\end{equation*}
$$

The vector W satisfies:

$$
\begin{equation*}
W^{\prime}=\left(\rho_{0} h^{\frac{1}{4}} / \rho_{1}\right) C W, \tag{2.6}
\end{equation*}
$$

where

$$
C=\left(\rho_{1} / \rho_{0} h^{\frac{1}{4}}\right)\left[L A L^{-1}+L^{\prime} L^{-1}\right] .
$$

Calculations show that $C=\left\{C_{i j}\right\}$ satisfies; $C_{i, i+1}= \pm 1, C_{i i}$ is bounded $(i=1,2,3,4)($ by $(2.1))$,

$$
\begin{aligned}
C_{32} & =\frac{P_{1} \rho_{1}^{2}}{P_{0} \rho_{0}^{2} h^{\frac{1}{2}}}=0(1) \text { as } x \rightarrow \infty \\
C_{44} & =\left(P_{2}-\lambda h\right)\left(\rho_{1}^{4} / \rho_{0}^{4} P_{0} h\right) \geq-k(\text { by }(2.2)), \text { and otherwise } \\
C_{i j} & =0
\end{aligned}
$$

We take, for $k=1,2,3,4$.

$$
\sqrt{\frac{\rho_{0} h^{\frac{1}{4}}}{\rho_{1}}} w_{k}=\left(\frac{\rho_{0}^{5-2 k} h^{\frac{3-k}{2}}}{\rho_{1}^{3-2 k}}\right)^{\frac{1}{2}} \frac{1}{P_{0}^{\alpha k}} y^{[k-1]}
$$

where

$$
\alpha_{k}=\delta_{3 k}+\delta_{4 k} \text { (kronical delta) }
$$

Thus, if we define

$$
\begin{equation*}
W_{k}=\int_{a}^{t}\left|w_{k}\right|^{2} \frac{\rho_{0} h^{\frac{1}{4}}}{\rho_{1}} d s \tag{2.7}
\end{equation*}
$$

3. Auxiliary lemmas

In this section we state lemmas from (1), and the proof of the results of this paper depends on the following lemma;
Lemma 3.1. If W is a solution of (2.6) such that $C_{i j}$ are bounded for all i and j and if (2.7) holds for $k=1,2,3,4$, such that $W_{1}(\infty)<\infty$. Then, W_{i} and w_{i}^{2} are $0(1)$ for $i=1,2,3,4$, more-over,

$$
\begin{aligned}
W_{i} & =0\left(W_{i+1}^{1-\frac{1}{2}}\right) ; i=1,2,3, \text { as } x \rightarrow \infty \\
w_{i}^{2} & =0\left(W_{i+1}^{1-\frac{1}{2 i}}\right) ; i=1,2,3 \text { as } x \rightarrow \infty
\end{aligned}
$$

Proof. Since $W_{1}(\infty)<\infty, W_{1}(x)=0(1)$ as $x \rightarrow \infty$, we rewrite

$$
W_{1}=0\left(W_{2}^{\frac{0}{1}}\right), \text { as } x \rightarrow \infty
$$

For w_{k}, write generally that:

$$
\begin{equation*}
\left.w_{k}^{2}\right|_{a} ^{t}=2 \int_{a}^{t} w_{k} w_{k}^{\prime} d s \tag{3.1}
\end{equation*}
$$

Thus, for $k=1$, by (2.5) and (2.6), we get:

$$
\begin{aligned}
\left.w_{1}^{2}\right|_{a} ^{t} & =2 \int_{a}^{t} w_{1} w_{1}^{\prime} d s=2 \int_{a}^{t}\left(\rho_{0} h^{\frac{3}{8}}\right) y\left[\left(\rho_{0} h^{\frac{3}{8}}\right)^{\prime} y+\rho_{0} h^{\frac{3}{8}} y\right] d s \\
& =2 \int_{a}^{t} \frac{\rho_{0}\left(\rho_{0} h^{\frac{3}{8}}\right)^{\prime}}{h^{\frac{5}{8}}} \frac{\rho_{0}^{3} h}{\rho_{1}}|y|^{2} d s+2 \int_{a}^{t} \rho_{0}^{2} h^{\frac{3}{4}} y y^{[1]} d s
\end{aligned}
$$

The first integral of the right hand-side is $0\left(w_{1}\right)\left[\frac{\rho_{0}\left(\rho_{0} h^{\frac{2}{8}}\right)^{\prime}}{h^{\frac{2}{8}}}\right]=0(1)$ as $x \rightarrow$ ∞, and by using Cauchy Schwartz inequality, the second integral is:

$$
\begin{aligned}
\int_{a}^{t} \rho_{0}^{2} h^{\frac{3}{4}} y y^{\prime} d s & =0\left(\left[\int_{a}^{t} \frac{\rho_{0}^{3} h|y|^{2}}{\rho_{1}} d s\right]^{\frac{1}{2}} \cdot\left[\int_{a}^{t} \rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2} d s\right]^{\frac{1}{2}}\right) \\
& =0\left(W_{1}^{\frac{1}{2}} W_{2}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty[\mathrm{by}(2.7)]
\end{aligned}
$$

Thus, we can write that: $\left.w_{1}^{2}\right|_{a} ^{t}=0\left(W_{1}^{\frac{1}{2}}\left[W_{1}^{\frac{1}{2}}+W_{2}^{\frac{1}{2}}\right]\right)$ as $x \rightarrow \infty$, Since $W_{1}=0(1)$ as $t \rightarrow \infty$. Then,

$$
\begin{equation*}
\left.w_{1}^{2}\right|_{a} ^{t}=0\left(W_{1}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Next, for $k=2$, in (2.7), we get:

$$
\begin{equation*}
W_{2}=\int_{a}^{t} \frac{\rho_{0} h^{\frac{1}{4}}}{\rho_{1}}\left|w_{2}^{2}\right| d s \tag{3.3}
\end{equation*}
$$

Now, by (2.6):

$$
W_{2}=\int_{a}^{t} w_{2} w_{1}^{\prime} d s-\int_{a}^{t} \frac{\rho_{0}^{2} h^{\frac{5}{8}}}{\rho_{1}} \frac{\left(\rho_{0} h^{\frac{3}{8}}\right)^{\prime} y \rho_{1}}{\rho_{0}^{2} h^{\frac{5}{8}}}\left(\rho_{1} h^{\frac{1}{8}}\right) y^{[1]} d s
$$

Integrating by parts the first integral of right hand side, we get;

$$
W_{2}=\left.w_{2} w_{1}\right|_{a} ^{t}-\int_{a}^{t} w_{1} w_{2}^{\prime} d s-\int_{a}^{t} \frac{\rho_{0}^{2} h^{\frac{5}{8}}}{\rho_{1}} y \cdot \frac{\left(\rho_{0} h^{\frac{3}{8}}\right)^{\prime} \rho_{1}}{\rho_{0}^{2} h^{\frac{5}{8}}}\left(\rho_{1} h^{\frac{1}{8}}\right) y^{\prime} d s
$$

From (2.7) and (2.4) we get:

$$
\begin{aligned}
W_{2}= & \left.w_{2} w_{1}\right|_{a} ^{t}-\int_{a}^{t}\left[\frac{\left(\rho_{1} h^{\frac{1}{8}}\right)^{\prime}}{\rho_{0} h^{\frac{3}{8}}}\left(\rho_{0} h^{\frac{3}{8}}\right) y^{\prime}+\frac{\rho_{1} h^{\frac{1}{8}} y^{[2]}}{P_{0}}\right]\left(\rho_{0} h^{\frac{3}{8}}\right) y d s \\
& -\int_{a}^{t} \frac{\rho_{0}^{2} h^{\frac{5}{8}}}{\rho_{1}} y \frac{\left(\rho_{0} h^{\frac{3}{8}}\right)^{\prime} \rho_{1}}{\rho_{0}^{2} h^{\frac{5}{8}}}\left(\rho_{1} h^{\frac{1}{8}}\right) y^{\prime} d s \\
= & \left.w_{2} w_{1}\right|_{a} ^{t}-\int_{a}^{t} \frac{\left(\rho_{1} h^{\frac{1}{8}}\right)^{\prime}}{\rho_{0} h^{\frac{3}{8}}}\left(\rho_{0}^{2} h^{\frac{3}{4}}\right) y y^{\prime} d s-\int_{a}^{t} \frac{\rho_{0} \rho_{1} h^{\frac{1}{2}}}{P_{0}} y y^{[2]} d s \\
& -\int_{a}^{t} \frac{\left(\rho_{0} h^{\frac{3}{8}}\right)^{\prime} \rho_{1}}{\rho_{0}^{2} h^{\frac{5}{8}}}\left(\rho_{0}^{2} h^{\frac{3}{4}}\right) y y^{\prime} d s .
\end{aligned}
$$

By using Cauchy Schwartz inequality and from (2.1) and (2.7), we get,

$$
\begin{aligned}
W_{2}= & w_{1} w_{2}+0\left(\left[\int_{a}^{t} \frac{\rho_{0} h|y|^{2}}{\rho_{1}} d s\right]^{\frac{1}{2}}\left[\int_{a}^{t} \rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2} d s\right]^{\frac{1}{2}}\right. \\
& +\left[\int_{a}^{t} \frac{\rho_{0}^{3} h}{\rho_{1}}|y|^{2} d s\right]^{\frac{1}{2}}\left[\int_{a}^{t} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\left|y^{[2]}\right|^{2} d s\right]^{\frac{1}{2}} \\
& +\left[\int_{a}^{t} \frac{\rho_{0}^{3} h}{\rho_{1}}|y|^{2} d s\right]^{\frac{1}{2}}\left[\int_{a}^{t} \rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2} d s\right]^{\frac{1}{2}}
\end{aligned}
$$

Thus, we can write:

$$
W_{2}=w_{1} w_{2}+0\left(W_{1}^{\frac{1}{2}} W_{2}^{\frac{1}{2}}+W_{1}^{\frac{1}{2}} W_{3}^{\frac{1}{2}}+W_{1}^{\frac{1}{2}} W_{2}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty .
$$

Since $W_{1}(x)=0(1)$ as $x \rightarrow \infty$, Then; By (3.1), for $k=2$,

$$
\left.w_{2}^{2}\right|_{a} ^{t}=2 \int_{a}^{t} w_{2} w_{2}^{\prime} d s=2 \int_{a}^{t} \frac{\left(\rho_{1} h^{\frac{1}{8}}\right)^{\prime}}{\rho_{0} h^{\frac{3}{8}}} \rho_{1} \rho_{0} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2} d s+\int_{a}^{t} \frac{\rho_{1}^{2} h^{\frac{1}{4}} y^{\prime} y^{[2]}}{P_{0}} d s
$$

By using (2.1) the first integral of the right hand side is $0\left(W_{2}\right)$ as $t \rightarrow \infty$ and by using Cauchy-Schwartz inequality the second integral is $0\left(W_{2}^{\frac{1}{2}} W_{3}^{\frac{1}{2}}\right)$ as $t \rightarrow \infty$. Thus,

$$
\begin{equation*}
w_{2}^{2}=0\left(W_{2}^{\frac{1}{2}}\left[W_{2}^{\frac{1}{2}}+W_{3}^{\frac{1}{2}}\right]\right) \text { as } t \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

While $w_{1}=0\left(W_{2}^{\frac{1}{4}}\right)$ as $t \rightarrow \infty$, hence

$$
\begin{equation*}
w_{1} w_{2}=0\left(W_{2}^{\frac{1}{2}}\left[W_{2}^{\frac{1}{2}}+W_{3}^{\frac{1}{2}}\right]^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.5), we get:

$$
W_{2}=0\left(W_{2}^{\frac{1}{2}}\left[W_{2}^{\frac{1}{2}}+W_{3}^{\frac{1}{2}}\right]^{\frac{1}{2}}\right)+0\left(W_{2}^{\frac{1}{2}}+W_{3}^{\frac{1}{2}}\right)
$$

Thus, after division by W_{2}, we get: $1=0\left(W_{2}^{-\frac{1}{2}}+I\right)$ as $t \rightarrow \infty$, where $I(t)=\frac{W_{3}^{\frac{1}{3}}}{W_{2}}$, hence

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf I(t)>0 \text {, i.e. } W_{2}=0\left(W_{3}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Further return to (3.4) and from (3.6) we get:

$$
w_{2}^{2}=0\left(W_{3}^{\frac{3}{4}}\right) \text { as } t \rightarrow \infty
$$

i.e.

$$
w_{2}=0\left(W_{3}^{\frac{3}{8}}\right) \text { as } t \rightarrow \infty .
$$

In a similar way, one can prove that at $t \rightarrow \infty$

$$
W_{3}=0\left(W_{4}^{\frac{2}{3}}\right) \text { and } w_{3}=0\left(W_{4}^{\frac{5}{12}}\right)
$$

Finally

$$
W_{4}=0(1) \text { as } t \rightarrow \infty \text { and } w_{4}=0(1) \text { as } t \rightarrow \infty .
$$

This completes the proof.
The Lagrange identity for $h^{-1} M[y]$ is:

$$
\int_{a}^{b}\left(h^{-1} M f\right) h \bar{g} d s-\int_{a}^{b} h f \overline{\left(h^{-1} M g\right) d s}=[f, g]^{\prime}
$$

where

$$
\begin{equation*}
[f, g]=\left[f \bar{g}^{[3]}-f^{[3]} \bar{g}\right]+\left[f^{\prime} \bar{g}^{[2]}-f^{[2]} \bar{g}^{\prime}\right] \tag{3.7}
\end{equation*}
$$

We note that: If $M[y]=\lambda h y$ and $M[z]=\bar{\lambda} h \bar{z}$ implies $[y, z]^{\prime}=0[$ See (1)]. For $M[y]=\lambda h y$, the quadratic expression is:

$$
\begin{equation*}
\left[y^{[3]} \bar{y}+y^{[2]} \bar{y}^{\prime}\right]^{\prime}=\frac{1}{P_{0}}\left|y^{[2]}\right|^{2}+P_{1}\left|y^{\prime}\right|^{2}+\left(P_{2}-\lambda h\right)|y|^{2} . \tag{3.8}
\end{equation*}
$$

We also make use of the vector spaces.

$$
\begin{aligned}
V & =\{f: M f=\lambda h f\} \\
V_{+} & =\{y: M y=\lambda h y\} \cap L_{h}^{2}[a, \infty) \\
V_{-} & =\{z: M z=\bar{\lambda} h \bar{z}\} \cap L_{h}^{2}[a, \infty) .
\end{aligned}
$$

Lemma 3.2. If $\operatorname{dim}\left(V_{+}\right)+\operatorname{dim}\left(V_{-}\right)>4$, then there is a $y \in V_{+}$and $z \in V_{-}$such that $[y, z]=1$.

For the proof see (1).
Lemma 3.3. Let F be a non-negative continuous function on $[a, \infty)$, and define

$$
H(t)=\int_{a}^{t}(t-s)^{2} F(s) d s
$$

If as $t \rightarrow \infty ; H(t)=0\left(t^{2}\left[H^{\prime \prime}\right]^{\frac{3}{4}}\right)$, then

$$
\int_{a}^{t} F(S) d s=0(1) \text { as } t \rightarrow \infty .
$$

For the proof see (1).
Next define

$$
\begin{aligned}
& J_{1}=W_{3}(t)=\int_{a}^{t} \frac{\rho_{1}^{3}\left|y^{[2]}\right|^{2}}{\rho_{0} P_{0}^{2}} d s, y \in V_{+} \\
& J_{2}=W_{3}(t)=\int_{a}^{t} \frac{\rho_{1}^{3}\left|z^{[2]}\right|^{2}}{\rho_{0} P_{0}^{2}} d s, z \in V_{-}
\end{aligned}
$$

$J_{1}(\infty)$ and $J_{2}(\infty)$ are $0(1)$ by lemma (3.1).
Theorem 3.1. If there are two positive continuous functions ρ_{0} and ρ_{1} such that:

$$
\begin{gather*}
\left.\frac{P_{1} \rho_{1}^{2}}{P_{0} \rho_{0}^{2} h^{\frac{1}{2}}}, \frac{\rho_{1}}{\rho_{0} h^{\frac{1}{4}}} \frac{\rho_{0}^{\prime}}{\rho_{0}}+\frac{\rho_{1}^{\prime}}{\rho_{1}}+\frac{P_{0}^{\prime}}{P_{0}}+\frac{h^{\prime}}{h}\right] \text { are } 0(1) \text { as } x \rightarrow \infty \tag{3.9}\\
\frac{-P_{2} \rho_{1}^{4}}{P_{0} \rho_{0}^{4} h} \leq k, \text { for same } k>0 \tag{3.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{a}^{\infty} \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s=\infty \tag{3.11}
\end{equation*}
$$

Then, $h^{-1} M[y]$ is the limit-point case at infinity.
Proof. We first show $J_{1}(\infty)<\infty$, from (3.8) we have:

$$
\begin{align*}
I & =\int_{a}^{t}\left\{\frac{1}{P_{0}}\left|y^{[2]}\right|^{2}+P_{1}\left|y^{\prime}\right|^{2}+\left(P_{2}-\lambda h\right)|y|^{2}\right\}\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}} d s \\
& =\int_{a}^{t}\left\{y^{[3]} \bar{y}+y^{[2]} \bar{y}^{\prime}\right\}\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}} d s . \tag{3.12}
\end{align*}
$$

Integrating by parts the left hand side, we get:

$$
I=0(1)-\int_{a}^{t}\left[y^{[2]} y^{\prime}+y^{[3]} y\right]\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime} d s
$$

By using the concepts of (2.3) we obtain:

$$
\begin{equation*}
I=0(1)-\int_{a}^{t}\left\{P_{1} y^{\prime} y-\left(y^{[2]}\right)^{\prime} y+y^{[2]} y^{\prime}\right\}\left[\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right]^{\prime} d s \tag{3.13}
\end{equation*}
$$

The last factor of the above integration can be estimated as follows:

$$
\left[\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right]^{\prime}=\left[k_{1} \frac{\rho_{1}}{t \rho_{0} h^{\frac{1}{4}}}+k_{2} \frac{\rho_{1}^{\prime}}{\rho_{0} h^{\frac{1}{4}}}+k_{3} \frac{\rho_{0}^{\prime} \rho_{1}}{\rho_{0}^{2} h^{\frac{1}{4}}}+k_{4} \frac{\rho_{1} P_{0}^{\prime}}{\rho_{0} P_{0} h^{\frac{1}{4}}}\right] \frac{\rho_{1}^{2} h^{\frac{1}{4}}}{P_{0}},
$$

where $k_{j}, J=1,2,3,4$ are constants by (3.9) we get:

$$
\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime}=0\left(\frac{\rho_{1}^{2} h^{\frac{1}{4}}}{P_{0}}\right) \text { as } t \rightarrow \infty .
$$

Hence

$$
\begin{align*}
\int_{a}^{t} & \left(P_{1} y^{\prime} y+P_{0} y^{\prime \prime} y^{\prime}\right)\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime} d s \\
= & 0\left(\int_{a}^{t}\left(\rho_{0} \rho_{1}\right)^{\frac{1}{2}} h^{\frac{1}{4}} y^{\prime} \cdot\left(\frac{\rho_{0}^{3} h}{\rho_{1}}\right)^{\frac{1}{2}} y \cdot\left(\frac{P_{1} \rho_{1}^{2} h^{\frac{1}{4}}}{P_{0} \rho_{0}^{2} h^{\frac{3}{4}}}\right) d s\right. \\
& \left.+\int_{a}^{t} \frac{P_{0} \rho_{1}^{2} h^{\frac{1}{4}}}{P_{0} \rho_{1}^{2} h^{\frac{1}{4}}} \cdot\left(\frac{\rho_{1}^{3}}{\rho_{0}}\right)^{\frac{1}{2}} y^{\prime \prime} \cdot\left(\rho_{0} \rho_{1} h^{\frac{1}{2}}\right)^{\frac{1}{2}} y^{\prime} d s\right) \\
= & 0\left(W_{2}^{\frac{1}{2}} W_{1}^{\frac{1}{2}}+W_{2}^{\frac{1}{2}} W_{3}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty \tag{3.14}
\end{align*}
$$

Using Cauchy-Schwartz inequality and by (3.9), we get:

$$
\begin{aligned}
& \int_{a}^{t}\left(P_{0} y^{\prime \prime}\right)^{\prime} y\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime}=0(1) \\
& \quad-\int_{a}^{t} P_{0} y^{\prime \prime} \cdot y^{\prime}\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime} d s-\int_{a}^{t} P_{0} y^{\prime \prime} y\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime \prime} d s
\end{aligned}
$$

The last factor of the second integral in the right hand side can be estimated as follows:

$$
\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right\}^{\prime \prime}=0\left(\frac{\rho_{1}^{2} h^{\frac{1}{4}}}{P_{0}}\right)^{\prime}=0\left(\frac{\rho_{0} \rho_{1} h^{\frac{1}{2}}}{P_{0}}\right) \text { as } t \rightarrow \infty .
$$

Hence

$$
\begin{align*}
\int_{a}^{t}\left(P_{0} y^{\prime \prime}\right)^{\prime} y\left\{\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{P_{0} \rho_{0}}\right\}^{\prime}= & 0\left(\int_{a}^{t} \frac{P_{0} \rho_{1}^{2} h^{\frac{1}{4}}}{P_{0} \rho_{1}^{2} h^{\frac{1}{4}}}\left(\frac{\rho_{1}^{3}}{\rho_{0}}\right)^{\frac{1}{2}} y^{\prime \prime} \cdot\left(\rho_{0} \rho_{1} h^{\frac{1}{2}}\right)^{\frac{1}{2}} y^{\prime} d s\right. \\
& \left.+\int_{a}^{t}\left(\frac{\rho_{1}^{3}}{\rho_{0}}\right)^{\frac{1}{2}} y^{\prime \prime} \cdot\left(\frac{\rho_{0}^{3} h}{\rho_{1}}\right)^{\frac{1}{2}} y \cdot \frac{P_{0} \rho_{0} \rho_{1} h^{\frac{1}{2}}}{P_{0} \rho_{0} \rho_{1} h^{\frac{1}{2}}} d s\right) \\
= & 0\left(W_{3}^{\frac{1}{2}} W_{2}^{\frac{1}{2}}+W_{3}^{\frac{1}{2}} W_{1}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty \tag{3.15}
\end{align*}
$$

From (3.13); (3.14) and (3.15), we have:

$$
\begin{aligned}
\left.\int_{a}^{t}\left\{y^{[3]} y+y^{[2]} y^{\prime}\right\}^{\prime}\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}}\right) d s & =0\left(W_{3}^{\frac{1}{2}} W_{2}^{\frac{1}{4}}\right) \\
& =0\left(J_{1}^{\frac{1}{2}} J_{1}^{\frac{1}{4}}\right)=0\left(J_{1}^{\frac{3}{4}}\right) \text { as } t \rightarrow \infty
\end{aligned}
$$

Next,

$$
\begin{aligned}
\int_{a}^{t} P_{1} y^{\prime 2}\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{P_{0} \rho_{0}} d s & =0\left(\int_{a}^{t} \rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2} \frac{P_{1} \rho_{1}^{2}}{P_{0} \rho_{0}^{2} h^{\frac{1}{2}}} d s\right. \\
& =0\left(W_{2}\right)=0\left(J_{1}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty
\end{aligned}
$$

Also,

$$
\begin{aligned}
\int_{a}^{t}\left(P_{2}-\lambda h\right)|y|^{2}\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}} d s & =0\left(\int_{a}^{t} \frac{\rho_{0}^{3} h}{\rho_{1}}|y|^{2} d s\right) \\
& =0\left(W_{1}\right) \text { as } t \rightarrow \infty
\end{aligned}
$$

These inequalities in (3.12) give:

$$
\int_{a}^{t} \frac{1}{P_{0}}\left|y^{[2]}\right|^{2}\left(1-\frac{s}{t}\right)^{2} \frac{\rho_{1}^{3}}{\rho_{0} P_{0}} d s=0\left(t^{2} J_{1}^{\frac{3}{4}}\right) \text { as } t \rightarrow \infty
$$

[by lemma (3.3)] with $F=\frac{\rho_{1}^{3} 3\left|y^{[2]}\right|^{2}}{\rho_{0} P_{0}^{2}}$, now applies to yield $J_{1}(\infty)<\infty$. Similarly, $J_{2}(\infty)<\infty$.

If $\operatorname{Im} \lambda=0$, then $V_{+}=V_{-}$. If $\operatorname{Im} \lambda \neq 0$, there is one to one correspondence from V_{+}onto V_{-}, i.e. $\operatorname{dim} V_{+}=\operatorname{dim} V_{-}$.

If $\operatorname{dim} V_{+}>2$ then $\operatorname{dim} V_{+}+\operatorname{dim} V_{-}>4$, and by lemma (3.2), then $[y, z] \equiv 1$, for $y \in V_{+}$and $z \in V_{-}$, hence from (3.7), we have;

$$
\left(y^{\prime} z^{[2]}-y^{[2]} z^{\prime}\right)+\left(y z^{[3]}-y^{[3]} z\right) \equiv 1 .
$$

Hence

$$
\begin{align*}
& \int_{a}^{t}\left(y^{\prime} z^{[2]}-y^{[2]} z^{\prime}\right)\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s+\int_{a}^{t}\left(y z^{[3]}-y^{[3]} z\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}\left(1-\frac{s}{t}\right)}{P_{0}} d s \\
& \quad=\int_{a}^{t}\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s \tag{3.16}
\end{align*}
$$

Now, the first integral on the left hand side can be estimated as follows: Since

$$
\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}}=0\left(\frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}}\right) \text { as } t \rightarrow \infty .
$$

Hence

$$
\begin{aligned}
y^{\prime} z^{[2]}\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} & =0\left(y^{\prime} z^{[2]} \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}}\right) \text { as } t \rightarrow \infty \\
& =0\left(\left[\frac{\rho_{1}^{3}\left|z^{[2]}\right|^{2}}{\rho_{0} P_{0}}\right]^{\frac{1}{2}} \cdot\left[\rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2}\right]^{\frac{1}{2}} \cdot \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} \frac{P_{0}}{h^{\frac{1}{4}} \rho_{1}^{2}}\right) \\
& =0\left(\left[\frac{\rho_{1}^{3}\left|z^{[2]}\right|^{2}}{\rho_{0} P_{0}}\right]^{\frac{1}{2}}\left[\rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2}\right]^{\frac{1}{2}} \text { as } t \rightarrow \infty\right.
\end{aligned}
$$

This means that:

$$
\int_{a}^{t} y^{\prime} z^{[2]}\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s=0\left(\left[\int_{a}^{t} \frac{\rho_{1}^{3}\left|z^{[2]}\right|^{2}}{P_{0} \rho_{0}} d s\right)^{\frac{1}{2}} \cdot\left[\int_{a}^{t} \rho_{0} \rho_{1} h^{\frac{1}{2}}\left|y^{\prime}\right|^{2} d s\right]^{\frac{1}{2}}\right.
$$

By Cauchy-Schwartz inequality, we get:

$$
\begin{aligned}
\int_{a}^{t} y^{\prime} z^{[2]}\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s & =0\left(W_{3}^{\frac{1}{2}} W_{2}^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty \\
& =0\left(J_{2}^{\frac{1}{2}} J_{1}^{\frac{1}{4}}\right)=0\left(\left[J_{1} J_{2}\right]^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty
\end{aligned}
$$

Also, the integral

$$
\int_{a}^{t} z^{\prime} y^{[2]}\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s=0\left(J_{1}^{\frac{1}{2}} J_{2}^{\frac{1}{4}}\right)=0\left(\left[J_{1} J_{2}\right]^{\frac{1}{2}}\right) \text { as } t \rightarrow \infty
$$

All these inequalities, in (3.16) give:

$$
\lim _{t \rightarrow \infty} \sup \int_{a}^{t}\left(1-\frac{s}{t}\right) \frac{h^{\frac{1}{4}} \rho_{1}^{2}}{P_{0}} d s<\infty
$$

and this contrary to the condition (3.11) of the present theorem. This means that $\operatorname{dim} V_{+}=2$, and the proof is complete.

4. General Application

If $P_{0}(t)=t^{\alpha_{0}}, P_{1}(t)=t^{\alpha_{1}}, P_{2}(t)=t^{\alpha_{2}}$ and $h(t)=t^{\alpha_{3}}$, where

$$
\alpha_{0} \leq \alpha_{3}+4 ; \alpha_{k}=\frac{(3-2 k) \alpha_{0}+2 k+2 k \alpha_{3}}{3} ; k=1,2 .
$$

Then, $h^{-1} M[y]$ is in the case of limit-point at infinity.

Proof:

It may be verified that conditions $(3.9) \rightarrow(3.11)$ hold with

$$
\rho_{0}=t^{\left(\alpha_{0} / 6-\frac{1}{6}-\frac{\alpha_{3}}{24}\right)}
$$

and

$$
\rho_{1}=t^{\left(\frac{\alpha_{0}}{2}-\frac{1}{2}-\frac{\alpha_{3}}{8}\right)} .
$$

As special choice of the above theorem, let $\alpha_{3}=0$, thus

$$
\begin{equation*}
3 \alpha_{1}=\alpha_{0}+2,3 \alpha_{2}=-\alpha_{0}+4 \text { and } \alpha_{0} \leq 4 \tag{4.1}
\end{equation*}
$$

We notice that conditions (4.1) are more general than those of (2). Here if we take $\alpha_{0}=0$, we get the equation mentioned in (2) which is

$$
\left(\psi^{(2)}\right)^{(2)}-\left(P_{1} \psi^{\prime}\right)^{\prime}+P_{2} \psi=\lambda \psi .
$$

Then

$$
P_{1}=k_{1} t^{\frac{2}{3}} \text { and } P_{2}=k_{2} t^{\frac{4}{3}}
$$

which is Everitt result (2).
Hinton (1) has given the following criterion for the equation

$$
M[y]=\sum_{k=0}^{n}(-1)^{k}\left(t^{\alpha_{n}-k} y^{(k)}\right)^{(k)}
$$

where,

$$
\begin{aligned}
\alpha_{0} \leq 2 n, \quad \alpha_{n-k} & =\frac{4(n-k)+\alpha_{0}(4 k-2)}{4 n-2} \text { and } \\
\alpha_{n} & =\frac{4 n-2 \alpha_{0}}{4 n-2} .
\end{aligned}
$$

If $n=2$, in this result we get:

$$
\alpha_{0} \leq 4,3 \alpha_{1}=\alpha_{0}+2, \text { and } 3 \alpha_{2}=-\alpha_{0}+4
$$

which is our special result (4.1).

References

[1] Hinton D.B; Limit-point Criteria for Differential Equations, Canad. J. Math. 24(1972), 335-346.
[2] Everitt W.N; On the Limit-point Classification of Four Order Differential Equations, J. London Math. Soc. 44, (1969), 273-281.
[3] Naimark. M.A; Linear Differential Operators, Part II (Ungar, New York 1968).

Mathematics Department, Faculty of education, Cairo University (Fayoum Branch).

[^0]: Received November 23, 1989

