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ON THE LIMIT-POINT CLASSIFICATION OF A
WEIGHTED FOURTH ORDER DIFFERENTIAL
EXPRESSIONS

M.F. EL-Zayat

Conditions are given to ensure that a weighted fourth order differential
equation on a half-line is in the case of the limit-point at infinity. These
conditions are in the form of limitations on the growth of these coefficients.

1. Introduction

The differential expression considered in this paper is:
Mly) = (Po(2)y®)? — (Pi(e)y’) + Pa(z)y = Mh(z)y (1.1

where A is a complex parameter, will be regular at all points of [0, oc| but
has a singular point at infinity, see (3).

It is assumed the coefficients FPy(z), Pi(z) and P,(xz) satisfy the follow-
ing basic conditions;

i- Py(z) is locally Lebesgue-integrable on [0, X], for all X > 0.

ii- Py(z) and Py(z) are absolutely continuous on [0, X], for all X > 0.

1i-Fyo(z) > 0 and Pi(z) > 0, for all z € [0,00]. The weight function
h(z) satisfies.

iv-h'(z) is continuous on [0, 00| and h(z) > 0.

We introduce the Hilbert space L} [a, 00) of complex valued measurable
functions f(x) such that:

|7 f(@)Ph(z)de

a
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converges and the inner product of f(z) and g(z)) in L3[a,occ) is defined
by
(@)g(@) = [ f(s@h(e)ds

Classical results give that the number m of linearly independent L3 [a, 0o)
solutions of M(y) = Ahy is the same for all nonreal A and satisfy the in-
equality 2 <m < 4.

When m = 2, the operator is said to be in the limit-point case at
infinity.

2. System of Differential Equations

Through this section, we assume pg, p; are positive functions on [a, co),
with second continuous derivatives and A denotes a complex number with
Re) = 0, we consider the conditions:

Py(z)pf o(1); Loy Ay Bo B

=0(1)asz — o0 (2.1)

Po(2)p3h: " pohipo p Pk
and Py(z)p!
—L2\T ﬂ; -
———— <k, for some K >0 22
Po(z)oth (22)

For (1.1), the quasi-derivatives yU'l are defined by:

y =y =y, o = Py(a)y”
[B K 112V [4] _
y = Pi(z)y’ — (Poy") and y'* = Ahy (2.3)

The equation M(y) = Ahy, has the vector formulation:

Y =AY (2.4)
where
Yy 0 1 0 1
y' . 0 1 I/P(] 0
Y = y[z] and A = 0 P] 0 _1
y[3] (P, —Ah) O 0 0

We transform y by the transformation W = LY, where L is the diag-
onal matrix.

L = diagonal {poh*, pih¥,(p2/poPoh?), (p3/p2Poh?)}
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Clearly, the vector W = [wy, wq, w3, wy)T is;

W = [(poh?y, (p1h®)y", (02 poPoh® Yy, (02 p2 Poh® )y P T (2.5)
The vector W satisfies:

W’ = (poh*/p1)CW, (2.6)

where :
C = (p1/poh*)[LAL™' + L'L71).

Calculations show that C = {C};} satisfies; C;;41 = £1,Cy; is bounded
(1 =1,2,3,4) (by (2.1)),

C32 = Plpl —O(I)aSJT—PDO

Polf’oh2
Cu = (P— AR)(pi/psPoh) > —k (by (2.2)),and otherwise
C,'j = 0

We take, for £ = 1,2,3,4.

poht - (Po Qkh_)- L =
" B EL Pcrky

where
ay = d3; + 64 (kronical delta).

Thus, if we define

t Lt
Wk :/ lwk|2p0 4 ds
a p

3. Auxiliary lemmas

In this section we state lemmas from (1), and the proof of the results
of this paper depends on the following lemma;

Lemma 3.1. If W is a solution of (2.6) such that C;; are bounded for all
t and j and if (2.7) holds for k = 1,2,3,4, such that Wy(oc) < co. Then,
W; and w? are 0(1) for i = 1,2,3,4, more-over,

W, = 0(¥V+1)a—123 as T — 00

Al
w? = 0 ,-:_12');321,2,3&33:—»00
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Proof. Since W(o0) < 00, Wi(z) = 0(1) as z — oo, we rewrite

a
W, =0(W,), asz — o0

For wyg, write generally that:
t
wilf = 2[ wpwds (3.1)
Thus, for k =1, by (2.5) and (2.6), we get:
2t A b g8 3y E N
wle = 2 [ wwids =2 [ (pohd)yl(poh?)y + pohiyMds
+ hi " 3k ¢
= 2] M;l;;”%lylzd8+?f pihiyyllds
a B 1 a

The first integral of the right hand-side is 0(w;) [@1”—:%}5@—’] =0(1) as z —
oo, and by using Cauchy Schwartz inequality, the second integral is:

t t p3hlyl? 1 4 1
/apﬁh%yy’ds = 0([/ﬂ f“—ﬁlngS] -[/ﬂ poprhz|y'[*ds]?)

= O(WiWE) as t — oolby (2.7)]

[S1C

1
2

Thus, we can write that: wi|! = O(PVI%[WI% + W;
W) =0(1) as t — co. Then,

as r — oo, Since
1)

1
wil = 0(W7?)ast — oo (3.2)

Next, for k = 2, in (2.7), we get:

¢ 1
W, = / poh | 2ds. (3.3)
a M

Now, by (2.6):

i ¢ ghi hé '
W2 = ] u’zw;d& _ pU B (PO B )5yp1 (p]hé_)y[llds
a a 451 p%hﬁ

Integrating by parts the first integral of right hand side, we get;
2hi  (poh®)'py

Ly
. mh®)y'ds
P ¥ p2hs (pih?)

t . t p
W2 = wow |} — f wywyds —j
a a
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From (2.7) and (2.4) we get:
t (ot Y Ryl
Wy = wowil; ‘/ [(—p!%)(f’oh%)y"" &}?“](Puh%)yds
0
2
/ pﬁha pohaspl(plh%)y!ds

t ¢ hE
= waw | — f (pl Z) (p2h¥)yy'ds — f PoPL27 vy ds
Poh3 a Py

_f i (Poh*)yy'ds.

poh

Q

p—

L5
-l

By using Cauchy Schwartz inequality and from (2.1) and (2.7), we get,
t oo hlyl? t
W, = w,wg—i—O([/ -m—p‘yl—ds]%[/ pgplh%]y'Fds]%
a 1 a
inh 2341 [t !9"13 [2112 712
+/ = |y|“ds|z j —_ ds|?
[/ pllyl ][npopoly |*ds]
t p3h t
H [ Byl st [ popihdly' s
Thus, we can write:

1 1 1 1 1 1
W, = wywy + O(WEWE + WEWE + WEWE) as t — oo.

Since Wi(z) = 0(1) as £ — oo, Then; By (3.1), for k = 2,
t t 1y, 2
wala = 2] Syds= 2.[ %Plpahﬂy |2ds +/ Md
a a PO 3

By using (2.1) the first integral of the right hand side is 0(W;) as
t — 00 and by using Cauchy-Schwartz inequality the second integral is

O(Wf W3 ) as t — oo. Thus,
= O(Wz%[Wg% + W3%]) as t — oo. (34)
While w, = O(W,§) as t — oo, hence

1 1 1
wyw, = 0(Wy [W} + Wé]%) as t — oo (3.5)
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From (3.3) and (3.5), we get:
11 1 1 1
Wy = O(W7 [W7 + WF3) + O(W7 + W)

Thus, after division by W,, we get: 1 = O(W;% + I) ast — oo, where

3
It} = %’V“z—, hence
lim inf I(t) > 0, i.e. Wy = 0(Wy) as t — oo (3.6)
Further return to (3.4) and from (3.6) we get:

3
w2 = 0(W4)ast — oo

ie. s
wy = O(W3) as t — 0.

In a similar way, one can prove that at t — oo

2
3

Ws = 0(W}) and ws = 0(W;?)

Finally
W, =0(1) as t —» oo and wy = 0(1) as t — co.

This completes the proof.
The Lagrange identity for A~'M[y] is:

b b
J (b M fhgds — [ hRTMg)ds = [, 7
where
[f:91 = [F3® — fPg] + [F'g™ — fP37 (3.7)
We note that: If M[y] = Ahy and M([z] = AhZ implies [y, z]' = 0 [See (1)].
For M[y] = Ahy, the quadratic expression is:
1 I
W9+ 55T = 2P + Bl + (P = M)l (3.8)
We also make use of the vector spaces.
V = {f:Mf=hf)}

Vi = {y:My=Xhy}nN Li[a,00)
V. = {z:Mz=Xhz}N Li[a,00).
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Lemma 3.2. If dim(V,) + dim(V_) > 4, then there is a y € V, and
z € V_ such that [y,z] = 1.

For the proof see (1).

Lemma 3.3. Let F' be a non-negative continuous function on [a,00), and

define :
H@%:Lﬁ—mfF@M&
If as t — oo; H(t) = 0(12[H"]1), then

[ F(8)ds =0(1) as t - co.

For the proof see (1).
Next define

f P?‘f |yt
J: d V.
1 ngg S, y € +
P1 [2]|2
Jz = I’Vg 0P2 dS, ZE V_

J1(00) and Jy(co) are 0(1) by lemma (3.1).

Theorem 3.1. If there are two positive continuous functions py and py
such that:

P 2 P’ h’
101 A1 [ _|_ + e L —] are 0(1) as ¢ — oo (3.9)
Pop3h " pohit " po Fo
—Pypi
<
Posth k, for same k > 0 (3.10)
and

/ hiplds = (3.11)

Then, h™'My] is the limit-point case at infinity.
Proof. We first show J;(o0) < oo, from (3.8) we have:

3
D= [AG 0+ AP+ (P = WY = 5L ds
Polo

= [P+ - 3L (3.12)
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Integrating by parts the left hand side, we get:
f Wy + {0 - 5L oyg,
poFo
By using the concepts of (2.3) we obtain:
¢ ' 2]y 2], 7 $\2 A
= [Py =GPy +PNa - 0rds (319)
The last factor of the above integration can be estimated as follows:
l

[(1— f)?p_?]' = [k; by + ks Pob . K mby ]p:fh%
: pOPD Poh: poh: hi P[)Pt)h‘ P(] ’

where k;,J =1,2,3,4 are constants by (3.9) we get:

1

2 1
&0 P 1h3
[, o =0 as t — oo.
{( t)pd%} (}%)
Hence
"ot S92 P?
[Pty + Py (1 = 5L yas
a PUPO
A dod p3h 1 Pip2hi
:0/ 2hiy - (22 1= Vds
(a(popl) y' (p1 2y - (Pop;-;h%)
tPOPfh% Pf 1 p iy 4
+/ — - (—)2y" - h2)2y'ds
. Popthl (po) y" - (pop1h?)2y'ds)
— O(WFW? + W2WZ) as t — oo (3.14)

Using Cauchy-Schwartz inequality and by (3.9), we get:

[Pyt -3 zp”’;o}u ()

t
_/ Poy"-y'{(l )2 pl }dS—/ Poy"y{ )2 P;J }"ds
a Poto
The last factor of the second integral in the right hand side can be
estimated as follows:

S

2 P] "
(= P =

pop1h?
Po

p?h'})
P

) as t — oo.

’:0(
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Hence
¢ 8\2_ P} P0p2h1 P vk
P [/AY) 1__2 1  J— 0/ bl v 1 hz 2yfds
[ Byt = 27 P G ()
hl
i f (Biyhyr. (ﬁqﬁ by SOIIE
a P1 Popoprhz
5 i3
= O(WZWZ +W3iWg)ast— co (3.15)

From (3.13); (3.14) and (3.15), we have:

[+ yya - 3-Lyas = owdws)
= 0(JEIH =0(Jf) ast = o0
Next,
P - s = o[ iy e
— O(Wa2) = 0(J#) as t — oo
Also,

t 8.5 15 tp3h
Py— Ryl = 3Pl gs = 0/-”— 24
JAGRED RS (f EtyiPas)
= 0(W)ast— oo

These inequalities in (3.12) give:

t -
[ 2 lpa - 2y ”;3 ds = 0(2JF) as t — 0o
a Iyg

Polo

yl2]|2

[by lemma (3.3)] with F = fl!—Pg—, now applies to yield Ji(o0) < o0.
Similarly, Jy(o0) < o0.

If ImA =0, then V, = V_. If ImA\ # 0, there is one to one correspon-
dence from V, onto V_, i.e. dimV, =dimV_.

If dimV, > 2 then dimV, + dimV_ > 4, and by lemma (3.2), then
ly,2] =1, for y € V, and z € V_, hence from (3.7), we have;

(y'2 — g2y + (yz[i%] - y[3]z) =1.
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Hence

t s ki hep3(1 -2
/ (v — (1 = 2 0 da +/ (y2? yla]z)Mds
t Po PO

hi
__] % Pld (3.16)

Now, the first integral on the left hand side can be estimated as follows:

Since .
14
(l—f)thl O(h;jpl) as [ — oo.
0 ()

Hence

1 4 1 4
A - 3)% 0(y AP

yz Py = 2 ast — oo
3).[2]12 1 2
Pl'z P 1o0r Ripr Fo
= Q{|[——————]7 - h2 2
([ PDPD [POPI |y|] PU h“pl
31.[2]12
112 1 VAL
= o2 Lyttt as 1 - oo
Polo

This means that:
}“ t [21)2 t ,
/ y;z[z](l pld j P1 lz I [/ pop1h5|y']2d~9]%
By Cauchy-Schwartz inequality, we get:

f y' 221 h pld = 0(W3%W2%) as t — 0o
= 0(JFJ3) = O([JyJ5]}) as ¢ — oo

Also, the integral

t hi 1 1
[0 - %) P”ld = 0(JEJF) = O([J Jo]3) as t — oo
a (]

All these inequalities, in (3.16) give:

t Lt
tlirn sup [ (1 — %) "

a
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and this contrary to the condition (3.11) of the present theorem. This
means that dim V, = 2, and the proof is complete.

4. General Application
If Po(t) =t Py(t) = t*, Pa(t) = t** and h(t) = t**, where
(3 = ‘Zk)ao - 2k -+ 2ka3
3
Then, h~*M[y] is in the case of limit-point at infinity.
Proof:
It may be verified that conditions (3.9) — (3.11) hold with

ap < az+4;ar = ske=1, 2.

po = tlee/6=8=3}
and
pr = tF-3-F),
As special choice of the above theorem, let a3 = 0, thus
3oy = ap+2,3a; = —ap+ 4 and ap < 4. (4.1)

We notice that conditions (4.1) are more general than those of (2). Here
if we take oy = 0, we get the equation mentioned in (2) which is

@)D — (Pyf) + Poyp = M.
Then , .
P] = k1t§ and Pg = kgts
which is Everitt result (2).
Hinton (1) has given the following criterion for the equation

n

M[y] = Z(__l)k(ta“—ky(k)){k}

k=0
where,
ap <2n, ap= An = ki_*_ ac‘,z(4k m and
n —
4n — 2ay
oy = —————.
. 4n —2

If n = 2, in this result we get:
ap < 4,30y = ap+ 2, and 3a; = —ag+ 14

which is our special result (4.1).
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