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A NOTE ON INTEGRAL INEQUALITIES OF
THE WENDROFF TYPE

A. A. S. Zaghrout

This paper is devoted to some nonlinear inequalities of Wenderoff type.
The bound obtained by these inequalities are adequate in many applica-
tions in the theory of partial differential and integral equations.

1. Introduction

The inequality of Gronwall [6] and its generalizations have played a
very important role in the analysis of differential and integral equations.
An interesting but apparently neglected generalization of Gronwall’s in-
equalities in two independent variables is due to Wendroff given in [3, p.
154]. In recent papers of Snow [11], Agarwal [2], Corduneanu [4], Kasture
and Deo [7], Pachpatte [8], Shastri and Kasture [10], Rasmussen [9], and
Vaz and Deo [12], some nonlinear generalizations to Wendroff inequality
are given. In this paper, we derive an analogous results which are exten-
sions to those results in [3], [4], [5], [7], [9], & [10]. The bound obtained
by the new inequalities are adequate in many applications in the theory
of partial differential and integral equations.

2. Main Results

In this section we shall state and prove some partial integral inequali-
ties in two independent variables.

Theorem 2.1. Assume
(i) é(z,y),9(z,y) and C(z,y) are real-valued continuous functions de-
fined on a domain D = [xy,a] X [yo, b]
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(ii) g(z,y) > 1, and is a real valued continuous function defined on D.
(iii) f(z,y) is a positive continuous and nondecreasing in both its ar-

guments and defined on D.

(iv) K(z,y,s,t,¢) and W(z,y, d) are real-valued nonnegative continu-
ous functions defined on D* x R and D x R respectively (where R is the set
of real numbers) and nondecreasing in the last variable and K(z,y,s,t, ¢)

is uniformly Lipschitz in the last variable. If the inequality

plz,y) < f(:L‘,y)+q(sc,y)[/;:/y:g(s,t)cﬁ(s,t)dsdt

+/ ]y :g(s,t)Q(s,t)( / /y: C(E, O) (€, ()dedC)dsdt]

Jr‘fif'(w,:f;,fc /y K(z,y,s,t, ¢(s,t)dsdt)
o Y¥o
s satisfied, then

d(z,y) < ¥(z,y)[f(z,y) + W(w, s, r(z,y)],

for all (z,y) € D, where

s

v = damesl [0t [ oo
xq(€, C))dédC Ydst),

and r(z,y) is the mazimal solutions of
T ry
r(ey) = [ [ K(@y,s,60s, O (s, HW (s, (s, 1)) dsdt
To Y'¥o

existing on D.
Proof. Define

m(z,y) = flz,9) + Wiay) [ [ K(z,5,5,6(s,1)dst.

To Y Yo

Then we can write inequality (2.1) in the form

b)) < may)+a@ ol [ (s 00(s dsd

(2.1)

(2.2)

(2.5)

¥ f /: 9(s,t)q(s, 1){ / ]y y C(€,C) (€, C}dEdC)dsdt)(2.6)
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Since ¢(z,y) > 1, and m(z,y) is positive and nodecreasing, so inequality
(2.6) has the form

¢($,y) T ry ¢(S,t)
kg q(z,y)[1 +/,,0 fm g(s’t)m(s,t)det
+f‘/y (s,t)q(s,t)

¢(£, ¢) :
LD fy (&5 m(€.0) dgdc)d dt]. (2.7)

Define a function u(z,y) such that

u(z,y) = 1+/ro/yo g(s, t
+/:co—/yo s,tq(s,t)

([ [ ceoteaaa @3

ddt

,

with u(zo,y) = u(z,yo) = 1. Thus

ux,,(my)=g(m,y)(( )) + gtz 9)e(z:9).

[ [ eeol 5 dﬁdC

un(z,y) < g(z,y)q(z,y)u(z,y) + 9(z, y)q(z,y)
"/,_. f C (& C)ul€, ) - gl&, ¢)dédc.

0 Y Yo

Using (2.7) we obtain

Hence

u:cy( x,y)
u(z,y)

From (2.9) we observe that

<glevaen)i+ [ [ 0E a6 Odec)  (29)

u(z, y)uz,(zy)
S < syt [ e Oute, Qe

uz (2, y)uy(z,y)
u?(z,y)

3
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0  ug(z,y)
o Caey) S s+ [ [ e a0 (210)

By keeping z fixed in (2.10), set y = ¢ and integrate with respect to ¢ from
yp to y and then keeping y fixed, set £ = s and integrate with respect to
s from zq to * we can easily have

wew) < el [ osnason+ [ [ oeo
xq(¢, ¢)d¢d(]dsdt].
Substituting this bound on u(z,y) in (2.7) we have

¢(z,y) < m(z,y)p(z,y) (2.11)
where ¥(z,y) is as defined in (2.3). By using (2.5) and (2.11) we get

$(e,y) < b)) + Wiy, [ [° K@yt gls,1)dsd]

This complete the proof.

Theorem 2.2. Assume

(i) u(z,y),9(z,y) and h(z,y) are real-valued nonnegative continuous
functions defined on :

A={(z,y):0<z <00, 0<y<oo},

(ii) f(z,y) is a real-valued positive, continuous function defined on A

(iii) W(r) is a real-valued positive, continuous, monotonic, non-decreasing,
subadditive and submultiplicative function for r > 0.

(iv) H(r) is a real-valued positive, continuous, monotonic nondecreas-

ing function forr > 0. If
u(z,y) < f(z,y) + gz, y)H( /ﬂ /ymh(s,t)W(u(s,t))dsdt). (2.12)
is satisfied for all (z,y) € A, then for all (z,y) € & C A
uzy) < flay)+9@NHEHG([ [T hs,OW(S(s,1)dsdt)
+ f j (s, OW (g(s, 1)) dsdt}]. (2.13)
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where G and G™! are defined by

r ds

¢ =, W)y

r>re >0, (2.14)

G~ is the inverse function of G, and

G(fooofomh(s,t)w f(s,t) dsdt—}—/ /OO s, 1)

W(g(s,t))dsdt) € Dom(G™1), (2.15)

for all (z,y) € Ay, where Ay = {(z1,11):0< 2, <2z, 0<y <y < oo}

Proof. Without loss of generality we may assume that u(z,y) > f(z,y).
Using the subadditivity of W and monotonicity of H, we have from (2.12),
that
u(z,y) — flz,y) < g(z, y)H[/ / h(s,t)W (u(s,t) — f(z,t))dsdt.
+ / f (5,1))dsdt). (2.16)

Let X(z,y) = u(z,y) — f(z,y) and define
v,y = /0 fyw h(s, D)W (X (s, ¢))dsdt
+ /O“’ /0 " h(s, )W (f (s, 8))dsdt, (2.17)

v(o0,00) = j:o /Ooo h(s, )W (f(s,t))dsdtl.

Then equation (2.16) can be restated as

X(z,y) < g(z,y)H(v(z,y)). (2.18)

Differentiating (2.16) and using the monotonicity and submultiplicity of
W, we get

Ua:y(xa y)

IAIA A
=
Rx

)
)H (v(z,y)) (2.19)
)
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From (2.18) we abserve that

W(H(v(z,y ))U«Ty ,Y) :c "
W2(H(v(z,y))) < h(z,y)W(g(z,y))

L va (2, Y)Wy (H(v(z,y)))
wi(H(v(z,y)))

e ) vo(Z, )
3_3!( W(H(v(z,y))) = MW elEs 1)

By keeping z fixed in the above inequality, we set y = ¢ and then inte-
grating with respect to t from y to oo, we have

_ W(UI 2t <f (z,9)W(g(z, 0))dt. (2.20)

From (2.14) and (2.20) we observe that

_E%G(v(.r,y)) < f " ke, )W (g(z, t))dt.

y

By keeping y fixed in the above inequality, setting z = s and then inte-
grating with respect to s from 0 to oo, we have:

v(z,y) < (;}'“1[6‘/oo /wh (s, )W (f(s,t))dsdt (2.21)
+f°°j°° (s, )W (g(s, t))dsdd],

for (z,y) € As. The desired bound in (2.13) follows from (2.12), (2.18),
(2.21).

Theorem 2.3. Assume:

(i) u(z,y),alz,y),9(z,y) and h(z,y) are real-valued nonnegative con-
tinuous functions defined on

A={(z,y):0<z <00, 0Ly< oo}

(i) f(z,y) is a real-valued positive, continuous function defined on /.
(i) W(r) is a real-valued positive, continuous, nondecreasing subaddi-
tive and submultiplicative function for r > 0,
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(iv) H(r) is a real-valued positive, continuous monotonic, non-decreasing
funetion forr > 0. If

u(z,y) < flz,y) +/:O a(s,y)u(s,y)ds
+g(z,y)H( L : /y “ h(s, )W (u(s, t))dsdt),  (2.22)
is satisfied for all (z,y) € A, then for all (z,y) € Ay C A
uzy) < HenlEy) +oEnaGE G [T [T

W (8(s, 1) f(s,1))dsdt) + /D ’ ]y  h(s, )W (d(s, 1))
xg(s,t))]dsdt))]. (2.23)

where

é(z,y) = exp( [ als,y)ds), (224)
G and G~ as defined in Theorem 2.2 such that
G [ h(s, W (8(s, )1 (s, )dsde)
r Jy
] / h(s, )W (d(s, )g(s,1)dsdt € Dom(G™Y),
0 Jy
for all (z,y) € A,, where Ay = {(22,92) : 0 < 22 < 2, 0 <y < yp < 00}.

Proof. Define a function m(z,y) by

m(z,y) = f(z,9) + (e H([ [~ hls, )W (u(s, 1))dsdt),

z Jy

then equation (2.22) can be restated as
ula,y) Smla,y)+ [ als,y)uls y)ds. (2.25)
Since m(z,y) is positive, nondecreasing, we observe from (2.25) that

uls,y) o
m(s’y)d . (2.26)

u(z,y) o
m < 1+/.1.- a(s,y)
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Define

R(z,y) =1+ /:o a(s,y)i((i’ 'Z))ds, R(oo,y) = 1. (2.27)

From (2.27) we have

LTS 5 ) ;
55 F@:y) = —a( ,'y)m(x,y)- (2.28)

By using ¥ < < R(z,y) in (2.28), we obtain

m(z,y) —

a%R(x»y) < a(z,y)R(z,y)

e, (o R(ey)/R(z.y) < a(z.v).

By keeping y fixed in above inequality, setting z = s and then integrating
with respect to s from z to oo, we have

Ria,y) < exp( [ als,y)ds) = ¢(z.v).

Thus (2.26) can be written as

u(e,) < ) (z) + ol A [ h(s, )W (u(s, O)dsdr)]

Again by following the same argument as in Theorem 2.2, we obtain
our desired bound in (2.23).

Remark. There is no difficulty to obtain bounds for the integral inequali-
ties of the form

u(@y) < floy)+ [ alsy)Gluls,y)ds
+g(z,y) L /y h(s, )W (u(s, t))dsdt)  (2.29)
and
u(z,y) < ﬂzw+/wﬂsmamSst
jjy (s, )W (u(s, 8))dsdt).  (2.30)



A Note on Integral Inequalities of the Wendroff Type 53

Under some suitable conditions on the functions involved in these inequal-
ities.

3. Application

In this section we shall give an application of Theorem 2.3 to obtain
the bound on the solution of a nonlinear integral equation of the form

u@y) = foy)+ [ K@ysu(sy)ds
+F(z,y, ]0 ],, " sy s tuls, )dsdt)  (3.1)

where all the functions involved in (3.1) are real-valued and defined on the
respective domains of their definitions and such that

|K(z,y,s,u(z,y))| < als, y)[u(s,y)], (3:2)
|¢(z, 5,5, t,u)| < (s, )W (Jul), (3.3)
|F(Ssy1u)l X g(x,y)H(lu[), (34)

where h(z,y),9(z,y),a(z,y) are as in the assumptions of Theorem 2.3.
Using (3.2), (3.3) and (3.4) in (3.1) we can easily have

jue,p)l < IS xy|+/°°asy|u(s v)lds

g(z,y) / j (s,t)W(|u(s,t)|)dsdt).

Applying Theorem 2.3, we obtain

ju(z,y)| < ¢(x,y)[f(w,y) +oe ) HENG [ [T s
W (s, ) f(s, ))dsdt) (3.5)
+ / / 5,0 (s,0)dsd0),

where ¢(z,y),G and G™! are as defined in Theorem 2.3. Thus the right
hand side of (3.5) gives an upper bound on the solution u(x,y) of (3.1).
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