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Comparison of Four Different Latent Heat Models
During the Melting Process
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1. Introduction

Problems which involve a phase-change
are of great physical significance in engineer-
ing applications such as casting, welding,
crystal growth, freezing of food, weather

prediction and so forth. A typical illustration

of the phase change phenomena 1is the
melting and solidification process. This 1s a
complex process that involves a coupling be-
tween heat /mass transfer and fluid flow,
and In most cases which does not yield an
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exact analytical solution. The experiment of
measuring the temperature change and of lo-
cating the boundaries defiming three regions
1s extremely difficult to perform. Hence nu-
merical analysis 1s essential tool to predict
the behaviour of phase change process. Nu-
merical modeling of the phase-change
processes is inherently difficult due to the
requirement that the momentum equation,
energy equation, and continuity equation,
together with interface boundary conditions
must be solved simultaneously. Moreover,
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due to the transient nature of this process,
moving interface locations should be con-
sidered in the model. Therefore, many
assumptions and constraints are required to
obtain the solution for transient temperatures
in phase-change processes.

In this paper, the transient phase-change
process together with the specific heat
method 15 examined. The specific heat
method [1—9] in conjunction with latent
heat release (or absorption) models is used
to solve the coupled momentum and energy
~ equations, The latent heat release (or ab-
sorption) models considered include the lin-
ear [1—11), quadratic [10], lever rule
{10—11] and Scheil’s equation [10—11]. Gen-
erally, the linear model has been widely used
because of its simplicity.

In this study, two distinct alloys-one with
a wide mushy zone and the other with a nar-
row mushy zone-have been chosen to investi-
gate the temperature histories, the melting
pattern and the effect of natrual convection
for the four proposed models. A comparison
will be made to examine the differences for

these proposed algorithms under the same
condition,

2. Governing Equations

From mass conservation,

equation can be expressed as

2
_3% -+ (PUj),j = ()

the continuity

(1)

Application of the principle of conservation
of linear momentum to the flud elements
leads to

el (2)

For the fluid, the stress tensor can be writ-
ten as:

au;
at

+ wu; ] =0, 1 pli

o, = —DPJ; + 7 (3)

The energy equation for phase change
problems based on the enthalpy formulation can
be rewritten in a cartesian coordinate as :

(63)

(4)

In order to solve the phase change problem
in the mushy zone, the source term, g¢s, in
equation (4) is defined as a time dependent
latent heat release, or,

PCo [%tz + UriT,ij =(kT,),; + q,

2 pL(1-1) (5)

Note that the latent heat release at the
interface is a linear function of the sohd
fraction, fs and it 1s assumend that the den-
sity variation is negligible in each phase, To
understand the temperature behaviors during
the phase change process, four different
relationships between the solid fraction and
the casting temperatures are considered. The
first algorithm is a linear model, in which
the latent heat release changes linearly be-
tween the solidus and liquidus temperatures.
This relationship is represented as :

q —

f L Tf‘iq l T
) 7?iq - 7:01

T.<T<T, (6)
where Tsoo and Tlig represent the solidus and
liquidus temperatures respectively.

The second algorithm 1s a quadratic model
where the latent heat release is changing
quadratically at the interfaces. This numeri-
cal formulation is given as:

=l ) T.<T<Ti (7)
qu—q-;ol

The third model of the latent heat release
is called the lever rule, in which the com-
plete equilibrium between the solid and liquid
phases is maintained throughout the process.:

The lever rule yields,

_ 1 T-1T,
fs_ l_P [T*—Tm] Y:OISTS Tziq (8.1)
" pET | (8.2)
T.— T, )

where P is the equilibrium partition ratio and
Tm is the fusion temperature of the pure ma-



— 64 — L&A FEE 1A O E A9 vdo vin A7 -HFE, YAE, 3444
terial. and

The fourth mode of latent heat release, as- e
suming infinite diffusion in the liquid phase Pr=-—="7 (15)

and no diffusion in the solid phase, yields the
following Scheil’s equation :

Tzs TS 7:(0 (9)

T=Te

Here, T: is the eutectic temperature of the
material, It is also worth noting that the
amount of latent heat release for these four
different modes is the same although the
rates at which the latent heat release (ab-
sorption) occurs is different.

The governing equations (1)—(3) are
nondimensionalized to measure the relative
importance of various terms and to identify
the dominant physical parameters. The fol-

lowing dimensionless quantities are
introduced to simplify the governing
equations :
U =~ VRaPr , (10.1)
T-T
* e ——-q'—-—- — ! * — -—‘x—
U 1/ T T—T x B
* — _i t* vi
Ip W 22 (10.2)
By substituting equations (10.1)—(10.2) into
equations  (1)—(3), the nondimensional

governing equations can be expressed as
follows :

vut = , (11)
3—“*+ R_au.., - Vur=—vp*t+ Vzu“'+-—i-f»
3t* Pr VU ir
- (12)
a1 .,
“pr ¢ T VRaPru* - VT (13)
2(m _
— VZ,I\* + QSl (le{ Tl)

where the Rayleigh and Prandt! numbers are
defined as :

_ pBe(T, —~ T)I
77

Ra (14)

(64)

Using the above dimensionless quantities and
nondimensional equations, the physical prop-
erties of the equation are replaced by the

following quantities :

— ./ Ba
PN pr
¢ = Pr
pu =10 (16)
g =10
k=10

2.1 Solution Procedures and Problem
Description

To make a quantitative assessment of the
latent heat release during the phase change
process, two different mushy zones are
chosen to be used with the four different
latent heat release models. One has a wide
mushy zone and the other has a narrow
mushy zone.

The latent heat release models, equations
(6)—(9), are substituted into the source
term in the energy equation to account for
the phase change. The enthalpy formulation
(or specific heat method) requires no explicit
conditions on the heat flow at the interface.
Thus, it 1s possible to use a fixed grid
scheme, which 1s beneficial since it simplifies
the numerical modeling requirements. ..

The numerical technique used in this study
1S based upon the finite element method,
using the Galerkin formulation., A detailed
description of the Galerkin method can be
found in the References [12, 13]. As is dis-
cussed in these references, an overrelaxation
factor 1s used for the wide mushy zone to in-
crease the time integration parameter while
an under-relaxation factor is used for the
narrow mushy zone to maintain the numerical
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Figure 1. Numerical domain, boundary condi-
tions and selected points to obtain
the temperature histories,

convergence. Generally, the viscosity of the

solid metal i1s over 20 orders of magnitude

higher than that of the liquid metal [11].

Hence large values of viscosity are assigned
in the solid phase when its temperature falls

below the melting temperature to ensure that

the velocity is zero in the solid phase.
The numerical domain and its boundary
conditions are shown in Figure 1. A fine grid

mesh was chosen near the walls because of

the high temperature gradient resulting from
natural convection. A coarse grid mesh was
chosen in the middle of the cavity.
Definitions for the physical input
paramenters is shown in equation (16) and
the resulting input paramenters for the two
different mushy zones are listed in Table 1.

(65)

Table 1. Input data for a wide mushy zone.
(nondimensional values)

Density 316.2
Specific heat (liquid phase) 0.08
Specific heat (solid phase) 0.1
Viscosity (liquid phase) 1.0
Viscosity (solid phase) 102%°
Gravity 1.0
Thermal conductivity 1.0
Temperature of liquidus 0.9
Temperature of solidus 0.7
Fusion temperature 0.93
Eutectic temperature ' 0.76
Rayleigh number 10000
Prandt]l number 0.1
Latent heat 5.0

Table 2. Input data for a narrow mushy zone,
(nondimensional values)

Density 316.2
Specific heat (liquid phase) 0.08
Specific heat (solid phase) 0.1
Viscosity (liquid phase) 1.0
Viscosity (solid phase) 102°
Gravity 1.0
Thermal conductivity 1.0
Temperature of liquidus 0.75
Temperature of sohidus 0.7
Fusion temperature 0.76
Eutectic temperature 0.71
Rayleigh number 10000
Prandt]l number 0.1
Latent heat 5.0

3. Results and Discussions

Two different mushy zones were selected
in this paper. One has a wide mushy zone,
(T — T*0=0.2), and the other has a nar-
row mushy zone, (g — T*0t=0.05). Initially,
the whole domain has a value of T*=0. For
two different mushy zones, four different
latent heat models are used to calculate the



— 66 - L84 St = 1A e FE 2d e v A4 -AF

4, U4, 344

Liquid Fraction in the Narrow
Mushy Region

1.0
0.9 —
0.8 — e
] ——- Quadratic
0.7 — —~- Lever
n —o— 8chell r)
0.6 -—— Linsar
= it
2
"“6 0.5 — [
« .
(T
E 014 -
g. . e
= 0.3
- 1 ],
0.2 h— >
0.1 — L)
0.0 = / T ] T 1 T 1 !
0.70 .71 0.72 0.73 0.74 0.75
Nondimensional Temperature
Liquid Fraction in the Wide
Mushy Region
1.0
0.9 —
0.8 —
B —#F— Quadratic
0.7 — —-Lever
1 —o— Gecheil
0.6 — —o— L inear /o
- i
S 05
T
® |
W 0.4
- 4
g 03
d »
0.2 I
0-1 -
0.0 T T T

0.70 ~ 0.78 0.80 0.85 0.90
Nondimensional Temperature

Figure 2. Liquid fraction versus nondimens-
ional temperature,

temperature history, the melting pattern and
the effect of natural convection during the
phase change process. The relationships be-
tween the liquid fraction and phase change
temperatures for the four different models
are shown 1n Figure 2. The difference in the
rate of latent heat absorption in the mushy
zone for each model is well exhibited in this
figure, At the early stage of the melting pro-
cess, a maximum of heat is absorbed in the

linear model, and minimum amount of heat is
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Figure 3. Velocity vectors for a wide mushy
region at time, *=179. (a) Linear
model, (b) Quadratic model, (c)
Lever rule, and (d) Scheil’s
equation,

absorbed in the Scheil’s and the lever rule.
However, in the early period of the solidifi-
cation process, a minimum of heat is released
in the linear model, and maximum amount of
heat i1s released in the Scheil’s and lever
rule,

Figure 3 depicts the velocity profiles of
the four different models at the
nondimensional time, $*==179. In all cases,
strong velocity motions are found near the
side walls due to the high temperature at the
walls. Circular motions in the top zone are
apparent because of the natural convection.
In the linear model, the velocity motion is
not found in the bottom of cavity because
the melting has not occurred at time, *=
179. The streamline for each case is shown in
Figure 4. Depending on the rate at which
heat i1s absorbed, it is obvious that the fluid

motions are different for each model.

Figure 5 represents the isothermal lines at
the time, ¢*=179. Similar temperature
distributions are found in the Scheil’s, the

(67)
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Figure 4. Streamlines for a wide mushy region
at time, #=179. (a) Linear model,
(b) Quadratic model, (c) Lever
rule, and (d) Scheil’s equation,

lever and the quadratic model, while the lin-
ear model shows a different temperature pro-
file due to the unmelted zone in the middle
of cavity. Figure 6 shows the temperature
history of the different latent heat models at

H

o |

(68)

selected points (node No. 1—4) in the wide
mushy  zone, Significant  temperature
differences are observed in the mushy zone
where the latent heat absorption has oc-
curred. The maximum discrepancies in tem-
perature profiles are found between the lin-
ear model and the Scheil’s rule or the lever
rule. The linear model fequires the most time
to obtain the complete melting compared to
the other models ; whereas the least time
would be required in solidification,

To examine the mushy zone during the
melting process, time, *=140, 1s also
chosen. The isothermal lines in each case are
shown in Figure 7. A, B and C represent the
nondimensional temperatures, 0.7, 0.8 and 0.
9, respectively. The mushy zone is located
between a and c¢. As it 1s shown in Figure 7
(a), linear model has a larger solid region,
while the other three models have similar
solid regions, Figure 7 distinct the difference
of the melting behaviors in each model. ‘

The temperature history in the narrow
mushy zone (node No, 5—6) is shown in Fig-
ure 8 for the four different latent heat
models. The temperature curves in the
mushy zone for the four different cases are
nearly coincident each other, since the latent
heat absorption occurs between a narrow
temperature band,
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Figure 5. Isotherms for a wide mushy region at time, #=179. (a) Linear model,
(b) Quadratic model, (c) Lever rule, and (d) Scheil’s equation.
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node points 3 and 4.
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Figure 7. Isotherms for a wide mushy region at time, #*=140. (a) Linear model,
(b) Quadratic model, (c) Lever rule, and (d) Scheil’s equation,
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Figure 8. Temperature histories for a narrow mushy region at selected node

points.
4. Conclusions models during the melting process was
performed to evaluate the differences in each
A numerical analysis of four latent heat model. The specific heat method was used to
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handle the phase-change phenomena at the
interfaces. No explicit interface boundary
conditions were required, so that the fixed
grid scheme was employed in this analysis.

Four different latent heat models were
employed to examine the melting pattern,
the temperature history and the natural con-
vection effect for two different mushy zones.

The numerical study shows a considerable
disagreement between the models in the tem-
perature history in the wide mushy zone.
However, no significant difference was found
in the narrow mushy zone. Therefore, a
proper selection of latent heat model is es-
sential to predict the exact temperature dis-
tribution during the phase-change process for
alloys having wide mushy zones.

Nomenclatures
a . Thermal diffusivity
B Volumetric thermal expansion coefficient
dij : Kronecker delta
p+ Density
p - Viscosity
v. Kinematic viscosity
: Specific heat
fs Solid fraction
g:. Gravity
k. Thermal conductivity
[: Reference distance
L : Latent heat

¢gs . Source term

p . Pressure

P . Equlibrium partition
t: Time

T: Temperature

T: . Eutectic temperature
T . Fusion temperature
Thq : Temperature of liquidus
Tsot : Temperature of solidus
T2 . Maximum temperature
T: : Minimum temperature
u: Velocity

U . Reference velocity

(72)
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