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Simulation of Mold Fluid Flow
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1. Introduction

A mathematically correct treatment of the
free surface movements is a central issue of
many practical engineering problems. One of
the typical examples can be found in the
area of mold filling process. This process,
due to highly transient movements of molten
material, results in a significant effect on the
characteristic of the castified material.

Most existing numerical algorithms which

handle the latent heat release during the sol-
1dification process are derived on the basis of
the instantaneous filling assumption!®, The
molten materials are assumed to instan-
taneously fill the mold and, thus, there is no
motion of the fluid at the beginning of the

solidification process. But it is obvious that
the mold filling process i1s highly transient
fluid flow phenomenon,

Several codes describing the free surface
problems are presently available, Marker
Cell(MAC) technique” and its derevatives,
Simplified Marker-Cell (SMAC) technique 8
and Solution Algorithm-Volume of Flud
(SOLA-VOF)%12) all treat the free surface
fluid flow problems. All of these numerical
codes are basically finite difference schemes
for the mathematical analysis of the flud
flow problem. In these codes, the domain 1s
divided into a number of subdomains which
are called cells. Then, the set of flmd func-
tion values (F) are introduced as a system to
represent the fluid domain at that instant,
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With the application of fluid dynamics
principles, the velocity field of the moving
domain can be calculated. Next, the flud
function value (F) is adjusted in accordance
with the velocity field just obtained.

The modified Solution Algorithm-Volume
of Flud Method(MSOLA-VOF) is intrduced
in this paper. The penalty function approach
1s used to muinimize the CPU time require-
ment by eliminating the dependent variable.
Two cases are presented to demonstrate the
effect of velocity and free surface move-
ments during the filling process.

2. Finite Difference Formulations of
Governing Equations

To understand free surface movements,
the continuity equation and the Navier-
Stokes equations are solved in the region of
interest. The continuity equation and the
Navier-Stokes equations can be expressed
repectively ;
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Equations (1) —(3) are now discretized with
respect to an Eulerian grid of fixed rectangu-
lar cells which is shown in Figure 1. The fi-
nite difference scheme of continuity equation
is adapted to rectangular grid;

D; ;‘=‘d“i“l;c‘“ ( Uiv1/2,; Ui /2, j) +7‘%3)_
(Vf,jﬂ/z'_?/:‘,j—l/z) (4)
Thus, the continuity equation should satisfy,
Dt.' ;=0 ’ (5)

for each cell at every time step.
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Figure 1. Location of dependent variables in the
rectangular grid.

Using Taylor expansion, the finite differ-
ence form of the Navier-Stokes equations (2)
and (3) are represented as;

d\t (u?ill/z,j 2":+1/2,J) 1 ((u';)Z__(uH_l]) )
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The superscript #+1 refers to a value at
time (n+1)dt, so that » counts the number
of cycles. For simplicity, superscript z 1is
omitted in each term where # is not shown,
The undefined quantities in equations (6)
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and (7) are specified by using a simple aver-
age 1n the .adjacent quantities. For exa-
mples,

1
U, ;, = ‘é‘“(u:‘ﬂ /2, ;‘+u:’w1/2.i)

_ 1
v, ;= _2_(05, j+1 /2+vz'. i1 /2)

1
Uivr/2 4172 E‘ ( Uit1/2, ;‘+u£+1 /2, f+1)

(8)

1
Vivr/2, 40172 = ?(Us, F+i /2+Uf+1, F+1 /2)

It may be noticed that as soon as
pressures are known for all the cells, then
equations (6) and (7) are immediately appro-
priate for the calculation of velocities. How-
ever it is tremendously time consuming to
obtain the pressure field by iteration. Gener-
ally, the vorticity equation i1s used to obtain
the velocity field independent of the pressure
field. The finite difference approximation to
the vorticity is,

Uiz 01 Uiv1 /2,5
Wit1/2,j+1/2 = ox (9)

Vit1,j+1/27 Vi j+1 12

gy
Equations (6) and (7) can be combined to
obtain an expression for @+, j+1,, Which, like
the differential equation, is independent of
the pressure field. Therefore, the velocity
field can be obtained by solving the vorticity
equation (9). However, this equation has a
great limitation when the problems are ap-
plied to 3-dimensional cases because the vor-
ticity equation can not be applicable for

3-dimensional problems.

To attain the numerical scheme indepen-
dent of dimensions, the penalty function ap-
proach 1s used to eliminate the pressure vari-
able 1n governing equations. The continuity
equation is perturbed in order to replace the
pressure terms in the Nawvier-Stokes equa-
tions, The perturbed equation is represented

% ] = —¢P R (].0)

where ¢ is typically between 107° and 1079,
Physically, this can be treated as the flow of
a very slightly compressible fluid. Equation
(10) is now substituted to equations (2) and
(3), then full velocity fields in each cell can
be obtained. When the calculated velocity
fields satisfy the continuity requirement, the
next time step will be proceeded. This i1s so
called modified Solution Algorithm-Volume of
Fluid (MSOLA-VOF) method.

MSOLA-VQOF has a great advantage over
the SOLA-VOF in CPU times, because for-
mer requires calculation of velocity field only
whereas latter needs the time-consuming
iterative solution between velocity field and
pressure field associated with vorticity calcu-
lation. Generally, the amount of CPU time
requirement of the SOLA-VOF 1s order of
magnitude larger than that of MSOLA-VOF
due to iterative procedure between the
variables.

2. 1 Boundary Conditions

Various boundary conditions may be ap-
plied at the wall of the computing mesh. In
this pater, two boundary conditions, free-slip
and non-slip, are used.

e A free slip boundary represents an axial
centerline or a plane of symmetry or a
nonadhering surface that exerts no drag
upon the fluid. The normal velocity
vanishes at the wall and there 1s no grad-
ent in tangential velocity. This is repre-
sented with respect to a Eulerian fixed
grid as,

;=0 at vertical wall, (11)

Ui = Vi, 5

e A non-slip boundary condition represents
an adhering surface that exerts drag upon
the fluid. This i1s accomplished by forcing
the tangential velocity to zero at the
boundary. This i1s represented as,
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2. 2 Stablilty Criterion

Numerical analysis often cuases high fre-
quency oscillations in space, time and both.
This behavior is usually referred to as a nu-
merical instability, To prevent the numerical
instability, the choice of the time increment
must be governed by several restrictions.
First, material can not move through more
than one cell in one time step because the
difference equations assume fluxes only be-
tween adjacent cells,

0X; 0Y;

5t < min( |u~‘l o ) .

(13)

where the mimimum is with respect to every
cell in the mesh.

Second, momentum must not diffuse more
than approximately one cell in one time step.
A linear stability theory implies the limi-
tation as,

<l 0%;0;
2 6x+6y

Equations (13) and (14) are used to adjust
the time step in each time calculation,

vol (14)

3. Volume of Fluid Method

To simulate the filling process or free sur-
face movements, it 1s necessary to trace the
fractional volume of the fluid at the free sur-
face. In MSOLA-VOF, the system is first
divided into a number of cells, then a func-
tion F(x, y,¢t) is defined at every cell which
value 1s unity in a region which fluid is occu-
pied and value of zero elsewhere. Cells with
F values between zero and one contain a free
surface (Figure 2).

The time dependent variable F is governed
by equation in the domain where 0<F<1.0,

Surface ™

(54)

By combining equations (1) and (15), thel
VOF function F can be written as,

aF | 9Fu , aFv __

at+ po -+ 2y 0 . (16)
The integration of the equation (16) over a
computational cell can be reduced to fluxes
of F across the cell faces. The amount of
volume transported in and out of a cell is
calculated after the velocity field is obtained
in equations (6) and (7). Therefore, it is

relatively easy to obtain F values as time
Progresses, |

F(x,y.t)

Free
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Evaluation of F function
Figure 2. Fluid domain obtained with VOF func-
tion (F) the MSOLA-VOF

method.

using

4. Results and Discussions

Fluid flow in the mold cavity during the
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filling process i1s highly transient ; the amount
of fluild volume and location of the free sur-
face change rapidly. Calculation of the lo-
cation of free surface and the internal vel-
ocity movements play a significant role in
characterizing the segregation of the
castified material. To understand the velocity
distributions and the free surface movements
in the mold cavity, two cases are simulated.
The first case is a horizontal casting shown

in Figure 4(d). The fluid is injected through
the ingate on the left side of cavity with n-
flow velocity of 10cm /sec. The cross section
of the mold is assumed to be infimite, so it
can be treated as a 2-dimensional flow

il
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Figure 3. The fluid pattern in the horizontal

casting at various time intervals{with-
out gravity force).

phenomenon, The kinematic viscosity and
the gravity are set, v=0.1m? /sec and g¢g=9.
8m/sec?, respectively.

In the beginning, the flud 1s about to
move 1nto the cavity. As the simulation
progresses, the molten metal enters in the
direct fashion and hits the wall on the rnight
side. Due to the momentum changes at the
right wall, it changes the flow direction to
the left. 6 seconds later from the start, the
left running flow meets the inflow stream
and forms two air pockets on the upper and
lower side of ingating fluid stream (Figure 3
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Figure 4. The iso-velocity lines at various time
intervals and schematic of the casting
domain,
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(d)-(e)). As time reaches 10.5 second, the
cavity 1s filled with molten metal shown in
Figure 3(f). When compared with SOLA-
VOF method,!¥ these numerical results show
good accuracy.

To understand the internal velocity
distributions some cases are selected from
calculated results and are displayed in Figure
3. Figure 4 shows the i1so-velocity line. As
depicted in Figure 4, the strong velocity
fields are found in the center of cavity at
the beginning stage of the process. As the
time progresses, the strong velocity fields
are maintained at the center and transient
velocity patterns are exhibited on the upper
and lower side of the cavity. Figure 4(c)
represents the final iso-velocity line. It is
found that the magnitude of the velocity is
larger on the right side of the cavity than on
the left side of the cavity.

The second case is a vertical casting

shown in Figure 5. The cross section of the
casting domain 1s assumed to be infinite that
the flow phenomenon can be treated as the
two dimensional case. The molten metal is
seen at the ingate and ready to enter the
cavity with ingate velocity of 10cm/sec. At
3 second, the front of incoming fluid hits the
wall on the right and jumps up. As the time

progresses, the molten metal hits the ingate

{a) t=3 sec

(b) t=4.5 sec

W

- P g= e

r"ﬂ"*‘- L

"WF-- L - L] L ]

- g = W L ] ] ¢ 2 s

- L |

 S—

T W P A A Y

sulpenipeaipeniesl) b oF & o . .

F PP P s e
PRV I S P B 3 B B NV
g B PP P L p o o 4 .

- - -
- L4 -
L]

L L} ]

(c) t=5.5 sec

‘\‘\‘..o"
N N

- - - [ 4 [ ]
-
» - »
ll

]
. . ‘ . - - - [ 4

(d) t=6.5 sec

(57)



F2A N4 FE e AN —AFE, AL, W4

(e) t=8 sec
R —

F o # & & > & & & & & 4+ s+ . . . .
‘¢ e e = o . & e e 4 4w

¢ 4 4 ¢ ° - =" « 878 & v .

t 4 4 ¢ v - - & & % %+ ¥ 4 .

$ 4 4 4 0 " a 8t 3 o v .

I I LY TR D B R R
"B B B I D D D Y S .
PR R R S s ¢ ¢ t ¢t r ¢ . .
T R T T | AN S N B T . e
I N T FIE I A A | ¢ . . 4
I 4 v =~ * * & F 0 0 e ., .«
] ¢ &~ = - L A A N e 4
P-; - = = ah o S P P ¢ . . e e . .
iy, W W M @ & ¢ o . e e e e = . '
L_............ = e & + + + s+ s e e e =& e = .

(f) t=8.5 sec

Figure 5. The fluid patterns in the vertical cast-

ing at various time intervals(with
gravity force).

flow and climbs upward direction to fill up
the cavity. A vortex 1s generated near the
ingate due to the flow direction changes and
ingate flow, |
Several time steps of vertical casting are
examined to understand the magnitude of
velocity during the mold filling process. Fig-
ure 6 shows the i1so-velocity contours. As
depicted in Figure 6, the strong velocity field
maintains its effect in diagonal direction due
to the boundary layer growth and the con-
finement of the cavity. Note that the vel-
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ocity scales are reduced to the one tenth of
the originally calculated results.

To wvalidate the present algorithm asso-
ciated with penalty approach, broken dam
problem which is the most typical illustration
of free surface movement is considered. In-
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Cavity

18 em —
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(d) Mold

Figure 6. The iso-velocity lines at various time
intervals and schematic of the casting
domain.

itially, a rectangular column of water is
confined between the two vertical walls (Fig-
ure 7). At the beginning of the calculation,
the right wall 1s removed to allow water

(a) t=0 sec
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(c) t=0.5 sec
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flow, Experimental results for this problem
have been reported® for the position of lead-
ing edge of water vs time, The comparison
between the MSOLA-VOF and experimental
results are shown in Figure 3 and it
demonstrates the accuracy of MSOLA-VOF,

In conclusion, it i1s important to notice that
segregation of the castified materials is de-
pendent of the internal velocities!?: 15 be-
cause the convective terms in governing
equations, (u-:-wu) and (u-<T), play a
magnificent role 1n characterizing the
solidfication phenomena., Therefore, the in-
itial velocity distributions caused from the
filling process must be considered to under-
stand the exact segregation behaviors,
Comparing MSOLA-VOF method with other
algorithms handling free surface flow
problems, MSOLA-VOF method gives rela-
tively high accuracy. In addition, this algor-
ithm can be applicable to 3 dimensional cases
and to the problems with thermal property
changes during mold filling process.

(b) t=0.2 sec
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Experimental
—— MSOLA-VOF

Figure 7. The fluid patterns ((a)~(d)) and comparison of calculated results vs. experimental data(e).'

Nomenclature

F : Volume of fluid

g. : Body force in x-direction
g, - Body force in y-direction
t: Time

u# : Velocity in x-direction
v: Velocity in y-direction

X . x-axis

ox : Space of x cell

¥y y-axis

0y : Space of y cell

P : Pressure

v . Kinematic viscosity

¢ . Penalty value

w . Vorticity
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