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1. Introduction

Let & be a square and consider the scalar partial differential equations of the form
(LD 4 = Ou + flx, uy) n

with homogeneous Dirichlet boundary condition, ie,, 4 = (0 on the boundary of {1, We shall assume
that the nonlinear term f: @ X R — R is smooth and satisfies the following conditions for some
positive constants K; and K, ,

[f(x, u)i, {DJ(I, u)l & Kyjul + K, and

(1.2) .o
Df(x, u)t £ Ky inO X R,

Under these assumptions one sees that the equation (1.1) admits an inertial manifold. See, for
example, Foias, Sell and Temam (1988) for reference.

In this paper we shall consider the “continuous time” discretization of (1.1) using a second order
Galerkin method and we prove that for sufficiently small discretization parameter, the approximate
equation has the same dimensional inertial manifold which converges to that of (1.1) in the certain

operator norm (see Theorem 2.1).
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2. Abstract Setting and Main Results

Let H = L%Q) and V = H}(0). We introduce a continuous, symmetric, bilinear form
a( -, -)onV X V defined by

a(u, v) = | vu- v

and the corresponding operator A on V with domain 25(A) = H*(Q) N H(). The bilinear form

is coercive, ie., there is a positive constant K3 such that
a(u, u) 2 Kylul}

and the operator A is sectorial and generates and analytic semigroup. Moreover we have 2(4%)
= H}(0). (See, for example, Henry (1981).)
It is clear from (1.2) that f induces a map f: V — V defined by

[Aw)lx) = flx, w(x)), u € V
and we can now write the equation (1,1) as an abstract differential equation

2.1 %tu_ + Au = f(u), uw(0) = y

where ug is an initial condition in V.

One sees that the initial value problem (2.1) possesses an unique solution and the existence
of global solution and gilobal attractor, 4, is guaranteed by virtue of the growth conditions on f.
For details, we refer to Temam (1988).

Now let us turn to a finite dimensional approximation of the equation (2. 1), For concreteness,
we consider the “continuous time” discretization of (2.1) using a second order Galerkin method,

For a sequence of discretization parameter h € (0, —;—] tending to zero, let T, be a regular family

of triangulations in the sense of Cialet (1978) where T), is made of triangles with diameters bounded
by h and we set

(2.2) Vi = {op € COf) N HYO)| VK € Ty, ol € P(K)},

where P,(K) is the space of all polynomials of degree = 1 on K. Then Vj is a finite dimensional
subspaces of H}().
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From now on we shall denote by | -1y, {-iy (-, <)y and (-, - )y, the norms and inner
products of the spaces H, V respectively and we introduce the operator A, € (V,: V,) defined
by

(2.3) Vo, € Vi, (Agwy, vy = alwy, v) for wy € Vi

Then A, is a self —adjint, positive definite, continuous, linear operator on V.
Let L,: H — V, be the orthogonal projection on V, (usually called L-projection) ie.

(v — Lyo, op)g = 0 Yo € H v, € V)

and let R,: V - V, be the orthogonal projection on V, (usually called elliptic projection or Ritz
projection) ie.

alv — Ry, vy) = 0 VYo € V, v € Vp,

These are standard orthogonal projections on closed subspaces of Hilbert spaces.
Then we have the approximate equation on V),

(2.4) B 1 A = Liftwn), w(0) = ugn
where ug, € V;. This equation is an ordinary differential equation and because of our assumptions
about nonlinear term f, the solution u,(t) exists for all positive ¢,

Under the following hypothesis on the spaces {V,} : there exist an integer m > 0 and, for any

8, —%— < 8 < 1, a constant C(8) > 0 such that, for all w € X* = 2(A%),

25 w — Ruoly + lw — Lywly S COR=F)juwixs

w — Ruwly + lw — Lywly S C(B)R™wiys

Hale, Lin and Raugel (1988) proved that the approximate equation (2. 4) also has a global attractor
A and it is upper —semicontinuous at h = 0, that is

(2.6) (A A) = “gt}: ﬂfA e — oly = 0 as h = 0.

They also remarked that the second order Galerkin method gives the estimates (2.5). For details,
see Hale, Lin and Raugel (1988) and the references cited there. Here m is related to the order
of differential operator. For the Laplace operator we have m == 1.

Our main goal is to compare the dynamics of the attractors, so we introduced a standard smooth
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cut—off function ¢(x): R — [0, 1] such that #(x) = 0 for x 2 pf and ¢(x) = 1 forzx =

-‘%6- where p, is chosen so that

. &
2.7) AC{v e V: 1vlvé “zu"}

AhC{DGVI‘Ulvg‘%Q‘}ﬂVh for b > 0

and we modify f(u) by ¢ (lul$)f(u) deL F(u). This type of modification is standard and from
now on we assume that the modification has been made, For h > 0, F,(u) is defined to be
Ly ¢ Cunl®)f (ug).

Hence we obtain new equations

(2.8) %—';— + Au = F(u), u(0) = uy onV

(2.9) ‘%Eth‘ 4+ Apup = Fpluy), w(0) = wy, on V.

Let0 <A £A4 = -—-and 0 < A, £ 4, = - denote the eigenvalues of A and A, respectively
repeated with their multipicities and let ¢, 4, -~ and ¢, 4,4 -~ denote the corresponding
eigenvectors of A and A, We assume that the eigenvectors form an orthonormal set in H. For
N 2 1, we let P = Py, P, = Py, denote the orthogonal proection of H onto span{g@, ¢, -,
# 5, span{ @ s, Bop v, Sy Tespectively and Q =1 — P, Qp =1 — P,

We will construct the inertial manifold s, 7, for (2.8), (2.9) as the graph of functions @ :
PV — QV, ®,: PV, — Q4V, and before we state our main theorem we introduce the natural

isomorphisms
mp: PV = RY for h 20

which is chosen so that lply = lmplgyw . Here | - Izgv denote the Euclidean norm of RV and we

take Py = P, V; = V, From now on we also take my = =, ®, = ® Let us look at the diagram

RY ! PiVh i OwVi

RN - PV ov
We compare ®;, via the progction m,. We define ®f (a) = ®4(m,"Ya)) for h = 0 and
HeF — of iy = <SR (@ (m, " Ha)) — By(my~La))ly

— 70 -~
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and the derivative of ®} as a function from R" to V is simply
D (a)(8) = D®y(m, Ha))m,~1(B)
hence we can define
DY — D®lly = « PP ID®, (m, (@) ), " 1(B) — D®(xg~Ha))mg ™ H(B)ly .

Here D is the derivative of ®;, as a function from PV, to Q4V, and the sup is taken over e,
B with |8lgv = 1. Since there can be no confusion we write D& — DO lly = |ID®, — D

®,lly. Now we state our main Theorems and we shall provide their proofs in the next two sections,

Theorem 2.1. For some N > 0, there exist N —dimensional inertial manifolds {m,} of (2.8) and
(2.9) such that are the graph of the smooth functions ®, which satisfy

(2.10) i@y, — Plly = (k) and
(2.11) ID®, — D®lly = dy(h)

where ¢1(h), dz(h) - () as h -0
In fact, ®, is constructed as the fixed point of the Lyapunov—Perron operator, ie.,

(2.12) Oy(pow) = §° WO (pa(s) + Dylpy(s)))ds
where pj(t) is the solution of the inertial form

%1;- + ApPrp = PyFp(p + ®4(p))

that satisfies pp(0) = po .

As a result of Theorem 2.1 , we have

Theorem 2.2. The flow on the inertial manifold W, is determined by an N —dimensional ordinary
differential equation

(2.13) %l:' = Gylp), p € RV

and the function G, converges to Gy in the space C'(B,, R") as h — 0, where By, is a ball in
RY of radius p,.

Remark. It is remarkable that Theorem 2.1 and Theorem 2.2 imply that the hyperbolic structure

7] —
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is preserved by the finite element approximation, For this kind of result, see Pliss and Sell (1990).
Precise and even general results will be discussed subsequerntly.

3. Basic Estimates

First, one easily sees that the nonlinear term F satisfies the “Standing Hypothesis” as given
in Luskin and Sell (1989), ie., there are positive constants C, and C; depending only on K;, Ky,

Ky and gy such that F: V — V has a continuous Gateaux derivative and satisfies

Flu)ly = Cy forall u € V
IDFlu)oly = Cilovly forall u, v € V

3.1

where D,F(u) denotes the Gateaux derivative of F at the point u and furthermore
(3.2) suppF C {u € V: loly = g

It is also easy to check the “Standing Hypothesis” for the nonlinear term Fy. In fact Fu(u)
has bounded support in the ball {u, € V,: luyly = £y and

IFrlu)ly = Ly @ Qual®)f(un)ly
£ WLy — D@ (lule)f(udly + 16 Qup®)fup)ly

< (B =L) + 1)1 Cuiftu)l, be (2.5)

2
s (C(B = —;—) + 1 |u:€s“£ flw)ly
s C,.

Similarly

D Fu(up)or = Ly @ (upl) apn(up, oa)f(uy) + L (luslf)Dof(up)vy

IDEAwony S (C8 = 3) + 1) (s flwlly + o DSty

s E,in,,tv.

We may assume Cp = Co and C; = C).
The existence theory in Luskin and Sell (1989) tells us that there are constants M, and M,,

—72
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depending only on C; such that if the eigenvalues of A, satisfy Aysein 2 My together with the
gap condition Ayy;, — Ay, 2 My, then (2.8) and (2.9) have inertial manifolds of the form
wmy, = graph @, where

(1) @0 PRV, —> QuV, is a smooth function with suppe, C {p, € PuVi: Iply = o)

(2) Dop(plly =1 forall p e PRV, and h 2 0.

Actually the operator A satisfies the spectral gap condition for some N and we keep this N.
Note that the eigenbalues of A have the form (mf + m§) where m; and m, are integers. In this
case, a result from number theory implies that the spectral gap condition is satisfied, cf. Richards
(1982). We prepare several estimates for the proof of our main Theorems, First of all we have

(3.3) ,.5313531 Ap — A = m(h) where m(h) — 0 as b — 0,
(3.4) sup [#ap — #ulv S m(h) where my(h) > 0 as h > 0.

These are proved in Strang and Fix by using Rayleigh quotient and the Minimax principle for
the 2m—order elliptic operator, We state below ;

Theorem 3.1. V), is such that lu — Ruyulys S CH'"*luly.., then for small h and for n = dimV,

r+l
(3.5) Ay S Ay & A, + 2CKHEmL T

Moreover the orthonormal eigenfuntions ¢, can be chosen so that the following estimate holds

rtl
(3.6) 160 — $oply = CREH-mR S5

In particular, note that (3.3) guarantees not only the existence of inertial manifolds of (2.9)
for h > 0 but also that they have the same dimension N for 0 = h S hy for some hy simply
because Ayyin — Ayp = Ayyy; — Ay — 2p(h) and #(h) - 0 also note that (3.4) gives the
estimate
(3.7 u, #.)udn — (4, $op)ubuply = mh)luly forn s N .

We provide other estimates which are needed to compare {®;) :

(3.8) [(e=4 — e~ AM)yyly & m(h, lugly for uy € V,, t > 0,

where for any T > 0, §.m(h, t)dt = 0 as h — 0.
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!F(U) - Fh(v)‘ﬂ s ?]4(h) forall v € Vi,
IDF(v)w — DFp(v)wy = n(h)lwly for all o, w € V,

(3.9

where 79, 74, 75 —> 0 as h = 0.
The estimates (3.9) are easily obtained by using (2.5), namely,

i

F(u) ~ Fp(w)ly = 16 (ulp)f(u) — Lyé Gult)f(u)ilg
Ch™ ¢ (ul3)f(u)ly

Ch™ for u € V.

A

{DuF(u)w - Dth(u)w%H

I

DA ¢ (lulgf(u)iw — LpD ¢ (ulf)f(u)wly
Ch™D{ ¢ (lulf)f (w)iwly

=
s Ch™wl, for u, w & V,
The estimates (3.8) is proved in the following theorem

Theorem 3.2. Let A be a strongly elliptic self—-adjoint operator of order 2m with homogeneous
boundary condition. If u is a solution in V of the equation

and wy, is a solution of the approximate equation

U

%:L + A = 0, w(0) = ug
then we have

1
(3.10) lu — wly £ 7 7h™ugly for uy € V, and t > 0.

Proof. This can be proved by using energy techniques combined with parabolic duality arguments.
This and more general results can be found in Luskin and Rannacher (1981) or Thomee (1984).

4, Proof of the Main Theorem

Since Theorem 2.2 is a direct consequence of Theorem 2.1, we mainly prove Theorem 21. In
particular we focus our attention only to the convergence of {®,}.

74—
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4.1 C convergence of {®}}.

We recall that for 0 S h = hy, ®, is the fixed point of the Lyapunov Perron operator, ie.,

(4.1) ylpon) = § N0 FL(pi(s) + Bulpils)))ds

where p,(t) is the solution of the inertial form
4.2) Phe + AwPipn = PyFi(py + ®ulps))

that satisfies px(0) = pos.
Since {®,} are sitting in different spaces, we must be more careful of comparing them. We use
the natural isormorphism x, : P,V, — RY and our goal is to get the estimates of

(4.3)
By (ni (@) ~ Bylxgi@)) = Bu(py) — Dylpo)
= §°.MONOF(pu(s) + Bhlpa(s)))ds — §.ACQF(p(s) + ®(p(s))ds
= [ (M°Q, — eA%Q)Fy(p(s) + Bu(pu(s)))ds
+ §LA%0[Fu(ph(s) + u(pa(s))) — Flp(s) + ®(py(s)))lds
+ [ LMVOFL(pa(s) + ulpals))ds — § LeACQF(pi(s) + ®(p(s)))ds

for lajgy = 2.
For the last two terms, one has

(4.4) | § A0 E (ph(s) + Dplpu(s)))dsly S Cp § eMv+irds
- ..__Cn....e"lﬁ+l,h7'
ANtih ’
and
(4.5) || TeACQF (py(s) + ®(pa(s)))dsly = Cq § Levrids
== -—-gﬂ-—g'“AN‘f-lT.
Ayt

Before we proceed, we prepare the following lemmas,

Lemma 4.1.
[my Y m(p)) — ply = Nmp(h)iply for p € PH.
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Proof. Let p = X, 5nCyé,, then ;Y (x(p)) = L,gnC,y and
i Hx(p)) ~ ply = 2 ledidn — daplv = Nm(h)iply by (3.4).

Lemma 4.2. Let A, = min(A;, A;) and A* = max(dy, Ay,) for 0 = h = hy. For u € V,,

we have

e}'“"}ﬁ(h)luh,, f()ft < 0

[(e44Py — eATP)uly < e
€ l'h("‘)lu#u, fOf t > 0.

where ng(h), 7(h) = 0 as h = (.

Proof. let u = 3,4, = Zcnp 6.5 then

(WP, — APPYu = 3 (eMicypfop — €M, ).

For t < 0,
[(et4hPhpy — &*APP)yl,
S M T MM el — cdl) + 5 (@R gt by g
sMiNm(h)luly + 3l — L g el by (3.7)
= Mgh)luly,
where
(4.6) 75(h) = Nmp(h) + sup 3 le!at) — gn-hig )y,

On the other hans, for ¢ > (,
[(e!AWPip, — !AFP)y|,

= el"ll’g' e‘(w—v)(cn,hin,h - Cn¢n) + ‘g (e‘(l""'—w) - ‘(Aﬂuv))c»¢nlv

s e)'“’l';(h)lﬂln
where
(4.7) m(h) = Nm(h) sup 3 e e T R

In particular #5(h), m;(h) = 0 as h - 0 because of (3,3).

—_ 76 —
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Lemma 4.3. Let py(t) be the solution of

4.8) A 1 Abipy = BEDL + ®04)

that satisfies the initial condition py(0) = pyy with |pygly = oy and p(t) be the solution of

(4.9) %—’f— + APp = PF(p + ®(p))

that satisfies the initial conditﬁ.m p(0) = pp with lpgly = &y, then for h > 0
Iph(t) = POl = e Pmo(h) + S oo — @yl
where t < 0 and n3(h) > 0 as h = 0,
Proof. From the variation of constant formula, we have
ph(t) = e~y (0) — § e IMREL(py + By(py))ds .
Hence

pr(t) — p(t) = (e ™™Wh — ¢~"4P)p,(0) + e **P(ps(0) —~ p(0))
— §(eSmDMp, _ e-0APPYE (0 + ®y(py) )ds
~ (16" N P(Ey(py, + Bylpy)) — Flpy + Du(py) ))ds

— §.eC N PP(F(py + ®u(p)) — Flp + @(p)))ds

and
(4.10)
loa(t) — p(Oly S e *mb)lp(0)lg + e Mipa(0) ~ p(O)ly
+ C e Py, (h)ds (using Lemma 4.2)
+ §./Ayet-"p(h)ds by (3.9)
+ et [ip(s) — pls)ly + @u(pals)) — ®(p(s))ly]1ds.
Now

[®alpn(s)) — ®(p(s))ly = ®y(pals)) — By Hx(p(s))))ly
+ 1@ (x; H(x(p(s)))) —~ (p(s))iy



i2 Min Kyn Kwak and Jooag ~Kyn Rim

S Ipa(s) — ml(x(p(s)Nly + 1@ — Blly
=< Ip(s) — p(ly + Ip(s) ~ mH=x(p(s)Dly + 1@ — Bylly.

Applying Lemma 4.1 , we obtain
(4.11) 1 ®u(pals)) — (p(s)ly = Ipls) — p()ly + 1@ — By + Nm(h)lp(s)ly .
In order to estimate |p(s)ly, we take the scalar product of (4.9) with p(s) and get
1 d .t . °
’Z"'d—zlp!?; + AT ply =2 —IPF(p + ®(p))lyiply
and
d A Tayt
‘J‘Wln = —Aiply — Gy
Hence we obtain
(4.12) PWln S (p(Oly + 2 )e™ fors < 0.
By using (4.10), (4.11) and (4.12) we get
Mpa(t) ~ plt)ly S "W R (k) + N a(h)
+ _C_‘Kﬂll'gh)_ (em"W =) _ ghvy 4 —i.l;}r(l — 8‘”’)?74(h)
+2C; §eMip(s) — pls)lds
+ 0 Lot 4 N (ke s
+ ¢ §ieMdsii® — dylly

S e~ -Wiy(h) — me(h) + -’-’C-;-H‘b - Pyliy

+ 2C, §.e™ipa(s) — pls)ivds,

where n3(h), ng(h) = 0 as h - 0.
By the Gronwall inequality, one gets

fle™ipu(s) — p(s)lvds

£ [letCu(e WMl (h) — spo(h) + —%‘H‘I’ - Dyllyids
N



Inertial Manifold for Finite Element Approsimation of Reaction Diffusion Eguation 13

(h) 1
= -Z-C,quirﬁ'-i* + Py e — il

Therefore
Mipy(t) — p()yS e FMWin(h) — me(h) + ~1-n¢ — Bylly
7h) | me(h) 1 e
+ ZCI{ 2C1~k‘+k~l 4(:? + 211\1 ”d, ‘bN“V}
and

oa() — p(D)ly < e nlh) + 250 2 e MID — Byl

where mg(h) — 0 as h — 0. This completes the proof of lemma 4.3.
Let us return to the equation (4.3). Since
(e — MYy = (MO, — AVQ)u + (eAWMP, — APP)y for u € V),

using (3,8) and Lemma 4.2, after applying A%‘, the first term on the right of the equation (4.
3) is bounded by

o, L

[ AZ (AP0, — APQ)Fy(pals) + Bylpal(s)))lvds
< Cp 1 (m(h, 5) + ermg(h))ds

= m(h, T).

Note that #;(h, T) - 0 as h — 0 for any fixed T > 0.

After applying AT to the equation (4.3), the second term on the right becomes

(4.13) §° ATA%O[F,(ph(s) + u(pa()) — Flpals) + Dulpa(s)))lds

[ ATAPO[F(py(s) + Bulpa(s)) — Flpls) + ®(pls)))]ds,

which is bounded from (3.9) by

§° JIAQ)T A%, dsmy(h)

+ S?,He"o"ﬂo,,cxlbh(s) — plsily + @ulpnls)) — ®(p(s))lyids.

e TG e
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We have the following in the middle of the proof of Lemma 4.3,

Ri(puls)) — Ap(s)iy = ipals) — p(ly + 1@ — Byly

+ (pO)ly + %)e**wzvr;z(h).
Hence (4.13) is bounded by
20 Pa;Em(h) + §'C2ipnls) ~ By + 1@ — B,
G IR e e A
and by Lemma 43, this is also bounded by

28_%Mé174(h) + 2C; S‘?.,e)'“'l"{emwﬂm(h) + ZLC e D~ D livids

1, 1 £ 4 G
el e w (l%} 3y V7elh)
4Ct 1
== + ® — Plly +
(1~(1~+1—1N) Avt i v+ ma(h)

where

I 2C ma(h) 1

Without loss of generality, we may assume that

Act 1 1

Ay(Rypp—ay) Antl 2

Finally we obtain

By (i (@) — Tplmi L))y S l—m — @iy + 2k, T) + my(h)

+ _—gn.——e'lN'i'lJl’, + —-—n—-e’LNﬁ’lT
Anaih Ay

@ — iy = 2m(h, T) + 2ma(h) + 2—»—”-; e MWHAT 2——{:: e~ T

This completes the proof of C®—convergence of {®).

— 80 —
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4.3. C! convergence of {®))
We use the similar argument to prove C! convergence, Recall that the derivative D®, was constructed

as a fixed point of the infinitesimal version of Lyapunov Perron intergral, that is,

D®(py) = §'.eMOORDFy(un(s))(Py + DOy(pa))Jy(phos)ds

where uy(s) = pu(s) + ®y(pa(s)) and Ju(psg,) is the solution of the linear differential equation
P+ AP = PDFi(py + ®u(p)) (P + DOy(py))e

that satisfies ]h(ph‘(), 0) = P;,,
Before we start proving, we recall that ®, is considered as a mapping from R¥ to V, by the
composite function, ie,,

Py(a) = By(x7 ().
Hence its derivative is to be
DOy(a)B = D®y(x; L(a))m; 1(B)
and we need to estimate :

(4.14) D@ (a)8 — D¥®(a)B
= D®(mi (@) (B) — DO(x~(a))x"1(8),

The next result is the infinitesimal version of Lemma 4.3, but much more complicated.
Lemma 4.4. Let Jy(x;Ya), t) be the solution of the linear differential equation

(4.15) Py + APy = PyD,Fy(pp + By(ps)) (P, + D®y(p,))e

that satisfies Jy(mi(a), 0) = Py, then for lelgn = p,

Ua(rir Ma), )ai 1 (B) — J(x~Na), )x~1(B)ly
< e"(”"‘cl)‘r]m(h, 1) + 38"(""+(71"P0HD¢), - m“v

where t < 0 and m3(h, t) = 0 as h = 0 uniformly on bounded t.
Proof. From the variation of constant formula, we have
In(mi Ha), OxpH(B) = e AP L(8)
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— e8P D By (un(5) (P + D®y(pa) il @), s)xi 1(8)ds

and by using the previous Lemmas and Gronwall inequality we can prove this lemma, We skip

its proof for conciseness,

Not we turn to the estimations of (4.14).

(4.16)
DOy (mj; Ha))m7 {(B) — D®(xY(a))n~ ()
= §"_AMODF(un(s)) (P + DOypy) alpro )dsi 2(8)
~ §7.A%OD,F(u(s)) (P + D®(p))j(py, )ds(x~1(8)),

We split the integral into two part §-L and {%; . We use Lemma 4.4 and argue as proving
CY—convergence to get a bound for the first integral. The second integral is relatively easy to
handle, Altogether we get

{D®y (7 Y(@))xi H{(B) — D®(x~Ya))x"Y(B)ly

7P
= h T e p®, —~ D®
7114( (X ) + A-N-f-l‘—lN“Cl “ h HV
e 2Crq “AnHaTy 2l T
(AN+1,I:"‘AN.I:"CI € ) (1N+1~AN“01 ¢ X
where 74(h, T) - 0 as h - 0 for any fixed T. We may have assumed ( < S [/ N
Avi1—Ay—C;
1 and we finally obtain
(4.17)
7P
1 - D®, — D®|
2C cAyaisT 2C -
< h, T)+ NN 3\ MU VR VY MR -5 L —— T .
mislh, T) Ays1h—AnpCyp Av—Ay—C; ¢

This inequality implies C!—convergence of {®,}.

5. Comparision with the Spectral Galerkin approximation

The other way to approximate the inertial manifold is by taking spectral projection of the equation
(2.1):

For any integer M 2 1 we consider the following Galerkin approximation
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(5.1) %AL + Auy = PyF(uy)

1
where uy takes its value in PyV = Pyu5(A7). As it already remarked in Foias, Sell, Temam

(1988), (5.1) satisfies the same properties as (2, 1). Consequently, for every M large enough, one
can construct an inertial manifold 34, which is the graph of a smooth function

QM: PNV - QNPMV (o QNV-
Moreover
1@ — Bylly = sp () — Bulpllv = OXE)) .

Furthermore, the eigenvalues A, of the operator A have the asymptotic representation

1
A, = D, + o(n?), a8 n—> o

for some constant D, see Sell (1989).
Compared to these, we have in Theorem 2.1

e — &) = o(h)

and as mesh size h decreases the dimention, say M, of the approximate equations increases in

proportion to —,—}2— that is

e — &l = 9(7%,7).

Therefore in both cases, we get the same asymptotic convergences. In other words, we need asymptotically
same number of approximate equations to get a good approximation,
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