A Note on a Compact Immersion

Jae Up So

Department of Mathematics, Chonbuk National University, 560-756, Chonju, Korea

1. Introduction and Notation

Let N be a Riemannian manifold with sectional curvatures $K_N \ge b$. Let B_r be a closed normal ball of radius r in N, and if b>0, assume that $r<\frac{\pi}{2\sqrt{b}}$. If N is a space from \widetilde{S}^n_b of constant sectional curvature b, then the mean curvature vector $H(\partial B_r)$ of the geodesic hypersphere ∂B_r in N is known to have the length $||H(\partial B_r)|| = h_b(r)$, where (c.f. [1])

$$h_b(r) = \begin{cases} \sqrt{b} \cot(\sqrt{b} r) & \text{if } b > 0; \\ \frac{1}{r} & \text{if } b = 0; \\ \sqrt{-b} \coth(\sqrt{-b} r) & \text{if } b < 0. \end{cases}$$

In [2], Markvorsen proved

Theorem 1 (Markvorsen), If $K_N \le b$ and if $||H(\partial B_r)|| = h_b(r)$ at every point of ∂B_r , then the interior of B_r is isometric to a ball of radius r in \tilde{S}_b^n , and ∂B_r is therefore isometric to $(S^{n-1}, \mathcal{S}_b(r))$ with constant curvature $K(b,r) = (h_b(r))^2 + b$.

The main object of this paper is to show a result, which is complementary to the above Theorem 1.

Theorem 2. If $K_N \ge b$ and if $||H(\partial B_r)|| = h_b(r)$ at every point of ∂B_r , then the interior B_r is isometric to a ball of radius r in \widetilde{S}_b^n , and ∂B_r is therefore isometric to $(S^{n-1}, g_b(r))$ with constant curvature $K(b, r) = (h_b(r))^2 + b$.

2. Preliminary Results

Let M be a compact, connected Riemannian manifold and let $\Phi: M \to B_r \subset N$ be an isometric immersion into the Riemannian manifold N with sectional curvature $K_N \ge b$, such that Φ has

its image in a closed normal ball B_r of radius r with $r < \frac{\pi}{2\sqrt{h}}$ if b > 0.

Let p be the center of the normal ball B_r in N, and consider the unique normal geodesic γ : $[0, l] \to B_r$ from $\gamma(0) = p$ to $\gamma(l) = q \in M$ (simplifying notations we write M for $\Phi(M) \subset B_r$).

Let $X \in T_q M$ be a unit vector and consider the unique Jacobi field V along γ with V(0) = 0 and V(l) = X. Let I(Y,Z) denote the index form along γ . Since $K_N \ge b$, we obtain

Lemma 2.1

$$I(V,V) \ge \frac{1}{l} (\langle X, \gamma(l) \rangle^2 + h_b(l)). \tag{2.1}$$

Proof. In the space form \tilde{S}_b^n of constant curvature b, let σ be a normal geodesic. Let $\{X_i\}_{i=1,\dots,n-1}$ be an orthonormal frame on γ , and let $\{Y_i\}_{i=1,\dots,n-1}$ be an orthonormal frame on σ .

If
$$X = \sum_{i=1}^{n-1} a_i X_i(l) + a_i \dot{\gamma}(l)$$
, then take a vector $\tilde{X} = \sum_{i=1}^{n-1} a_i Y_i(l) + a_n \dot{\sigma}(l)$, on σ .

Let \widetilde{W} be the unique Jacobi field along σ with $\widetilde{W}(0) = 0$ and $\widetilde{W}(t) = \widetilde{X}$, and let W be a vector field along γ with the same expression in the parellel frames $\{X_i\}$, $\{Y_i\}$ as \widetilde{W} . That is, if $\widetilde{W}(t) = \sum_{i=1}^{n-1} a_i(t) Y_i(t) + a_n(t) \sigma(t)$, then $W(t) = \sum_{i=1}^{n-1} a_i(t) X_i(t) + a_n(t) \gamma(t)$.

We then obtain

$$I(V,V) \le I(W,W) \le \tilde{I}(\tilde{W},\tilde{W})$$
 (2.2).

To calculate $\tilde{I}(\tilde{W},\tilde{W})$, we put $T(t)=\vec{\sigma}(t)$, and define a parellel field Y(t) along σ by requiring

$$Y(l) = \widetilde{W}(l) - \langle \widetilde{W}(l), T(l) \rangle T(l)$$

Note that $Y(t) \perp T(t)$ for all t.

Being a Jacobi field in a space form, Wacan be decomposed uniquely into

$$\widetilde{W}(t) = ktT(t) + \phi(t)Y(t).$$

where $k = \frac{1}{l} \langle \widetilde{W}(l), T(l) \rangle$, and where $\psi(t)$ satisfies the differential equation

$$\psi''(t) + b\psi(t) = 0.$$

with the boundary conditions $\psi(0) = 0$ and $\psi(l) = 1$. Here, we have

$$\psi(l) = \begin{cases} \sqrt{b} \cot(\sqrt{b} \ l) & \text{if } b > 0; \\ \frac{1}{l} & \text{if } b = 0; \\ \sqrt{-b} \coth(\sqrt{-b} \ l) & \text{if } b < 0. \end{cases}$$

And so, $\psi'(l) = h_b(l)$.

Using this information and the fact that \tilde{I} $(\tilde{W}, \tilde{W}) = \langle \tilde{W}', \tilde{W} \rangle|_{t=l_0}$ we get

$$\tilde{I}(\tilde{W}, \ \tilde{W}) = \frac{1}{l} < \tilde{W}(l), T(l) >^2 + h_b(l) \mid\mid Y(l) \mid\mid^2,$$

where

$$|| Y(l) ||^2 = || \tilde{W}(l) ||^2 - \langle \tilde{W}(l), T(l) \rangle^2.$$

The lemma now follows from (2.2), since

$$||\tilde{W}(l)||^2 = ||X||^2 = 1.$$

and

$$<\widetilde{W}(l),T(l)>^2 = < X, \forall (l)>^2.$$

Before proving Theorem 2, we consider again $\Phi(M) = M \in B_r(p)$. Define the function $f: M \to \mathbb{R}$ by

$$f(q) = \frac{1}{2} d(p,q)^2$$

for $q \in M$.

Lemma 2.2

With the notation of the lemma 2.1.

Hessian of
$$f(q)(X,X) = \nabla^2 f(q)(X,X)$$

= $l(I(V,V) + \langle \alpha(X,X),\dot{\gamma}(l)\rangle)$,

where α is the second fundamental form of M at q in N.

4

Proof.

$$Hess.f(X,Y) = D(Df)(X, Y)$$

$$= D(df)(X, Y)$$

$$= (\nabla_Y df)(X)$$

$$= Y(df(X)) - df(\nabla_Y X)$$

$$= YXf - (\nabla_Y X)(f)$$

$$= XYf - (\nabla_X Y)(f)$$

$$= X \langle \operatorname{grad} f, Y \rangle - \langle \operatorname{grad} f, \nabla_X Y \rangle$$

$$= \nabla_X (\operatorname{grad} f), Y \rangle$$

where ∇ is the Riemannian connection on M.

Define the function $g: N \to \mathbb{R}$ by $g(q) = \frac{1}{2} d(p,q)^2$ for $q \in N$. Then, $g \mid M = f$ and

$$\begin{aligned} Hess.f(X,Y) &= XYg - (\nabla_X Y)(g) \\ &= XYf - ((\nabla_X Y)^T f + (\nabla_X Y)^\perp (g)) \\ &= Hess.f(X,Y) - (\nabla_X Y)^\perp (g) \\ &= Hess.f(X,Y) - \langle \operatorname{grad} g, (\nabla_X Y)^\perp \rangle \\ &= Hess.f(X,Y) - \langle \alpha(X,Y), \operatorname{grad} g \rangle. \end{aligned}$$

where

is the Riemannian connection on N.

Since g has constant value on ∂B_t , grad g is orthogonal to ∂B_t , and grad $g = a(t)\dot{\gamma}(t)$.

Hence,
$$\langle \operatorname{grad} g, \dot{\gamma}(t) \rangle = \dot{\gamma}(t)(g) = \frac{\mathrm{d}g}{\mathrm{d}t}(t) = t$$
, and so $\operatorname{grad} g = t\dot{\gamma}(t)$. Thus

$$\begin{aligned} Hess.f(q)(X,X) &= Hess.g(q)(X,X) + \alpha(X,X), \, \text{grad} \, \, g \rangle_q \\ &= \langle \, \bigtriangledown_X \, \text{grad} \, \, g, \, \, X \rangle_q + \, \langle \, \alpha(X,X), \, b \dot{\gamma}(l) \, \rangle \\ &= l \, \langle \, \bigtriangledown_V \dot{\gamma}(l), \, X \, \rangle_q + l \, \langle \, \alpha(X,X), \, \dot{\gamma}(l) \, \rangle \\ &= l \, \langle \, \bigtriangledown_{\dot{\gamma}(l)} V, X \, \rangle_q + l \, \langle \, \alpha(X,X), \, \dot{\gamma}(l) \, \rangle \\ &= l \, \langle \, V, V \, \rangle + l \, \langle \, \alpha(X,X), \, \dot{\gamma}(l) \, \rangle \\ &= l \, \langle \, I(V,V) + \langle \, \alpha(X,X), \, \dot{\gamma}(l) \, \rangle) \end{aligned}$$

3. Proof of Theorem 2

We let $M = \partial B_r$ and use Lemma 2.2. Since f has constant value on ∂B_r , we get

$$-\langle \alpha(X,X), \gamma(r) \rangle = I(V,V). \tag{2.3}$$

Hence, from Lemma 2.1 and the fact that $\langle X, \gamma'(r) \rangle = 0$, we obtain

$$-\langle \alpha(X,X), \gamma'(r) \rangle \le h_b(r). \tag{2.4}$$

Since $h_b(r) = ||H_q(\partial B_r)|| = \frac{1}{n-1} \sum_{i=1}^{n-1} (-\langle \alpha(X_i, X_i), \gamma'(r) \rangle)$, where $\{X_i\}$ is an orthonormal basis of $T_q(\partial B_r)$, we must have equality in (2.4) for every X. But, then, from (2.3),

$$I(V,V) = \tilde{I}(\tilde{V}, \tilde{V}) = h_b(r)$$

Since $K_N \ge b$, this is only possible if $K_N(V \land \gamma(t)) \equiv b$. This is then for every γ connecting p and ∂B_r and for every orthogonal Jacobi field V along γ .

Let $i: T_pM \to T_{\bar{p}}\tilde{S}^n_b$ be a linear isometry. Let $\exp_{p^{-1}}(q) = x$ and let γ_x is the unique geodesic in B_r such that $\gamma_x(0) = p$ and $\dot{\gamma}_x(0) = 0$. Defien a map ϕ_i from the interior of B_r to the interior of S_r by

$$\phi_i(q) = \exp_{\overline{p}} \circ i \circ \exp_{\overline{p}}^{-1}(q),$$

where S_r is the ball of radius r in \tilde{S}_b^n with center \bar{p} .

To show ϕ_i is an isometry, it is enough to show that $||d\phi_i(v)|| = ||v||$, for all q in the interior of B_r and for all $v \in T_qM$ with $v \perp \gamma x(1)$. Because

$$||d\phi_{i}(\gamma_{x}(1))|| = ||\gamma_{ix}(1)|| = ||ix|| = ||x|| = ||\gamma_{x}(1)||.$$

Let $d \exp_p(y_x) = v$, where $v \in T_qM$ with $v \perp \gamma_x(1)$. Then, $d \exp_p(y_x) = V(1)$, where V is the unique orthogonal Jacobi field along γ_x such that V(0) = 0 and $V'(0) = y \in T_pM(c.f.[3])$. Since i is linear, $di(y_x) = (iy)_{ix}$ and so,

$$d\phi_i(v) = d \exp_b((iv)_{ix}).$$

Thus

$$d\phi_i(v) = d \exp_{\mathbf{r}}((iv)_{iv}) = \tilde{\mathbf{V}}(1)$$

where \tilde{V} is the unique orthogonal Jacobi field along the geodesic γ_{ix} in S_r such that $\tilde{V}(0) = 0$ and $\tilde{V}'(0) = iy \in T_b$ \tilde{S}_b^n .

From the Rauch Comparison Theorem, $||V(1)|| = ||\overline{V}(1)||$. Hence

$$||d\phi_{i}(\mathbf{v})|| = ||\tilde{V}(1)|| = ||V(1)|| = ||v||.$$

We conclude that the interior of B_r is isometric to a geodesic ball of radius r in \tilde{S}_b^n . Finally, the Gauss equation in connection with

$$\langle \alpha(X_i, X_i), \alpha(X_j, X_j) \rangle = (h_b(r))^2$$

shows that ∂B_r has the constant curvature mentioned in Theorem 2.

References

- [1] Eschenburg, J-H., O'Sullivan, J.J., Jacobi tensors and Ricci curvature, Math. Ann. 252(1980), 1~26
- [2] Markvorsen, S., A sufficient condition for a compact immersion to spherical, Math. Z. 183(1983), 407~411.
- [3] O'neill, B., "Semi-Riemannian Geometry with Applications to Relativity," Academic Press, 1983.
- [4] Spivak, M., "Comprehensive Introduction to Differential Geometry," Publish or Perish, Inc., 1979.