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1. Introduction and Notation

Let N be a Riemannian manifold with sectional curvatures Ky = b, Let B, be a closed normal
baﬂofradiusrinN,andifb>O,assumethatr<-é%.lfNisaspacefrom 8% of constant sectional
curvature b, then the mean curvature vector H{aB,) of the geodesic hypersphere 2B, in N is known
to have the length |!H(2B,) || = hy(r), where (cf. [1])

Sbeot(,/br if 5>0;
h(r)= { + if b=0:
J/ —b coth /:—I;r) if <0,

In [2], Markvorsen proved

Theorem 1 (Markvorsen), If Ky = b and if [|H(2B,) {l=hy(r) at every point of 2B, then the
interior of B, is isometric to a ball of radius r in S;, and 2B, is therefore isometric to (S*/
8w(r) with constant curvature K(b,r) = (hy(r))* + b.

The main object of this paper is to show a result, which is complementary to the above Theorem

Theorem 2. If Ky=b and if {|H(3B,)|l = hy(r) at every point of 2B, then the interior B, is
isometric to a ball of radius » in 8%, and 2B, is therefore isometric to (8", &(r)) with constant
curvature K(b, r) = (h(r))*+b.

2. Preliminary Results

Let M be a compact, connected Riemannian manifold and let ® : M — B, C N be an isometric

immersion into the Riemannian manifold N with sectional curvature Ky = b, such that ® has
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its image in a closed normal ball B, of radius r with r <~2—§T if 50,

Let p be the center of the normal ball B, in N, and consider the unique normal geodesic ¥ :
(0,1] = B, from ¥(0) = p to y(I) = ¢ € M(simplifying notations we write M for ®(M) CB,).

Let X € T,M be a unit vector and consider the unique Jacobi field V along ¥ with V(0) =0
and V(I) = X. Let I(Y,Z) denote the index form along y. Since Ky = b, we obtain

Lemma 2.1

IV.YV) 25 (X7 0¥+ b (). 1)

Proof. In the space form §7 of constant curvature b, let s be a normal geodesic. Let
{Xi}i=1, .., n.1be an orthonormal frame on y, and let {Yi}iet ... ny be an orthonormal frame on
a.

If X= 3""!a; Xi{)+ax(l), then take a vector X = Sl aYill) + a6(l), on o,

Let W be the unique Jacobi field along ¢ with W(0) = 0 and W(!) = X, and let W be a vector
field along y with the same expression in the parellel frames {X3, 1Y} as W. That is, if W(t) =
5 a0 YD) +an(0)d (1), then W(b) = I a,(t) Xi(0) + a,(1)7 (8).

We then obtain

(v,V) s (WW) s I(W, W) (22).
To calculate I(W, W), we put T(t) =4 (¢), and define a parellel field Y(t) along o by requiring
CY() = W) - (WD, TU)YT().

Note that Y(¢) L T(¢) for all t.
Being a Jacobi field in a space form, Wcan be decomposed uniquely into

W(t) = kT(t) + ¢(e) Y(0),
where k= % (W(1),T(1) ), and where p(t) satisfies the differential equation

¥(0) + p(t) =0,

with the boundary conditions $(0) = 0 and $(I) = 1. Here, we have
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ﬁcot(ﬂl) f£b6>0:
v =4 + ifb=0:
S =beoth (/=b 1) if b<0.
And so, ¢'(1) = hy(1).
Using this information and the fact that 7 (W W)= < W', W> |, we get

1w, w=1 <wo,re > +moivor

where

HY () 1R = || W) 1= <W(1), T)>
The lemma now follows from (2.2), since

HWY 117 = [IXIIF =1,

<W(),T) >*= < X, ¥ (I) >

Before proving Theorem 2, we consider again ®(M) = M € B,(p). Define the function f: M —
R by

flg)= -;—al(p,qr)z

for g € M.

Lemma 2.2

With the notation of the lemma 2.1.

Hessian of f(g}(X,X) = V¥(g)(X.X)
= IV, V)+La(X.X)y(1))),

where « is the second fundamental form of M at ¢ in N,
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Hess.f(X,Y) = D(DfI(X, Y)
=D@f)(X. Y)
= (Vydf )(X)
= Y{(df(X))~df (v yX)
= YXf-(7yX)(f)
= XY~(vxY)(f)
= X gradf, Y ) —{gradf, vVxY)
= Vx(gradf),Y)

where ¥ is the Riemannian connection on M.

Define the function g : N—R by g(q) = —;—d(p,q)2 for g € N. Then, gi M =f and

Hess f(X,Y) = XYg— (VxY)(g)
= XYf - (VxV)'f + (TxY)*(2))
= Hess.f(X,Y) - (TxY)*(g)
= Hess.f(X,Y) - grad g,(¥xY)*>
= Hess.f(X,Y) - a(X,Y), grad g,

where ¥ is the Riemannian connection on N,

Since g has constant value on aB,, grad g is orthogonal to 2B, and grad g = a(t)¥(¢).
Hence, (grad g, 7 (1)) =7(1)(8) = S&-(t) =t, and o grad ¢ =ty (1), Thus

Hess.f(¢)(X,X) = Hess.g(q)(X,X) + a(X,X), grad g,
=(Uxgrad g, X>,+ («AX.X), W (1))
=IO ), X) o+ I<a(X.X), 7))
=1( Ty V.X Yy + 1 a(X.X), V)
=1V, V) + I{aXX), ¥())
=V, V) + (a(X.X),Y (D))

3. Proof of Theorem 2

We let M ==2B, and use Lemma 22, Since f has constant value on 2B, we get
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—(a(XX),7 (1) > =KV, V). (2.3)
Hence, from Lemma 21 and the fact that (X, ¥ (r) ) ={, we obtain

~ (a(XX),7 (r) ) S hy(r). | (24)

Since hy(r) = [Hq(aB)il = 11 = <a(X, X)), ¥ (1)), where {X}} is an orthonormal basis

n—

of T4(2B;), we must have equality in (24) for every X. But, then, from (2.3),
[V, V) =T(W, W) =hy(r).

Since Ky 2 b, this is only possible if Ky(V Ay (t))==b, This is then for every y connecting p
and aB, and for every orthogonal Jacobi field V along ¥.

Let i: T,;M — T ;S0 be a linear isometry. Let exp,(q) = x and let ¥, is the unique geodesic
in B, such that y,(0) = p and ¥,(0) = 0. Defien a map ¢; from the interior of B, to the interior
of S, by

#i(q) =expp °ioexpy;(q),

where S, is the ball of radius r in S with center p.
To show ¢; is an isometry, it is enough to show that |id ¢;(v)!{ =llv||, for all q in the interior
of B; and for all v € TM with v L ¥ x(l). Because

Hd @7 (I = Y (DIl = {lixll = lixll = (DI

Let d expy(y,) =v, where v. € TM with v L ,(1). Then, d expy(yx) = V(1), where V is
the unique orthogonal Jacobi field along ¥, such that V(0) =0 and V'(0) =y € TM(cf[3]).

Since i is linear, di(y,) = (iy)ix and so,
déi(v) =d expp((iy)ip).

Thus
déi(v) =d expp((iy)i) = V1),

where V is the unique orthogonal Jacobi field along the geodesic ¥, in S, such that V(0) =0
and V'(0) =iy € Ty S}
From the Rauch Comparison Theorem, |{V(1)}l = {{V(1)}l. Hence

Hd g (v)iE = V(DI = BV = o,
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We conclude that the interior of B, is isometric to a geodesic ball of radius r in S';,'. Finally, the

Gauss equation in connection with
(a(X,, X,), a(X;, X;))= (hy(r))

shows that 2B, has the constant curvature mentioned in Theorem 2.
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