A Note on the Coincidence Theory

Dae—Shik Chun, Chan—Gyu Jang and Sik Lee

Department of Mathematics, Chonbuk National University,

Chonju, 560—756, Korea.

I. Introduction

Let f and g be the continuous functions from a topological space X to a topological space Y. A point x of X satisfying f(x)=g(x) is called a coincidence of f and g. The set of coincidences of f and g is denoted by $\Gamma(f, g)$, that is,

$$\Gamma(f, g) = \{x \in X \mid f(x) = g(x)\}.$$

The object of coincidence theory is to provide a method for computing the number of coincidences. In [1], Brooks defined the Nielsen number which is a lower bound for the number of coincidences. Let F be a homotopy from f to f' and G be a homotopy from g to g'. The main tools are the f, g-equivalence relation on $\Gamma(f, g)$ and F, G-related relation between the coincidences of f, g and those of f', g'.

In this paper, first of all, we define a coincidence class using covering space theory as the way Jiang have done in [4] to define a fixed point class in fixed point theory ([4], pp.4 \sim 6) and we prove that a nonepmty coincidence class is equal to a class by the f, g-equivalence relation on $\Gamma(f, g)$ (Theorem 2.7).

Next, we show that the number of coincidence classes are homotopy invariant (Theorem 2.9). Lastly, we derive a definition (Definition 2.10) which is also obtained from a result of Jiang ([4], p.8) and prove that it is equivalent to the F, G-related relation (Theorem 2.12).

II. Main Theorems

We always assume X and Y to be connected compact polyhedra. It is well known that a connected compact polyhedra has a universal covering space. Let $p: \widetilde{X} \to X$ and $q: \widetilde{Y} \to Y$ be the universal coverings of X and Y, respectively.

2

Definition 2.1. A lifting of a map $f: X \to Y$ is a map $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ such that $q \circ \widetilde{f} = f \circ p$. A covering transformation of \widetilde{X} is a homeomorphism $\gamma: \widetilde{X} \to \widetilde{X}$ such that $p \circ \gamma = p$.

The covering transformations of \widetilde{X} form a group, we shall denoted it by $\mathfrak{Z} = \mathfrak{Z}(\widetilde{X}, p)$ which is isomorphic to the fundamental group $\Pi_I(X)$ of X. We denote the covering transformation group of \widetilde{Y} by $\mathfrak{Z}' = \mathfrak{Z}'(Y, q)$.

Proposition 2.2. (i) For any $x_0 \in X$ and $\widetilde{x_0}$, $\widetilde{x_0}' \in p^{-1}(x_0)$, there is a unique covering transformation $\gamma: \widetilde{X} \to \widetilde{X}$ such that $\gamma(\widetilde{x_0}) = \widetilde{x_0}'$.

- (ii) Let $f: X \to Y$ be a map. For given $x_0 \in X$ and $f(x_0) = y_0$, pick $x_0 \in p^{-1}(x_0)$ and $y_0 \in q^{-1}(y_0)$ arbitrarily, then there is a unique lifting \widehat{f} of f such that $\widehat{f}(x_0) = \widehat{y_0}$.
 - (iii) Suppose \widetilde{f} is a lifting of f, $\gamma \in \mathfrak{D}$ and $\gamma' \in \mathfrak{D}'$. Then $\gamma' \circ \widetilde{f} \circ \gamma$ is a lifting of f.
 - (iv) For any two liftings \widetilde{f} and \widetilde{f} , there is a unique element $\gamma' \in \mathfrak{Z}'$ such that $\widetilde{f}' = \gamma' \circ \widetilde{f}$.

Proof. (i), (ii) are standard theorems in covering space theory. (iii) follows from Definition 2.1.

(iv) For any $x \in X$ and $\widetilde{x} \in p^{-l}(x)$, we have $\widetilde{f}(\widetilde{x})$, $\widetilde{f}'(\widetilde{x}) \in q^{-l}(f(x))$. By (i) there is a unique element $\gamma' \in \mathbb{Z}$ such that $\gamma'(\widetilde{f}(x)) = \widetilde{f}'(\widetilde{x})$. Thus we have $\gamma' \circ \widetilde{f} = \widetilde{f}'$ by uniqueness of (ii).

Lemma 2.3. Suppose $\widetilde{x} \in p^{-1}(x)$ is a coincidence of liftings \widetilde{f} and \widetilde{g} of f and g, respectively, and let $\gamma \in \mathfrak{D}$. Then $\gamma(\widetilde{x}) \in p^{-1}(x)$ is a coincidence of a lifting \widetilde{f}' of f and a lifting \widetilde{g}' of g iff there is a unique element $\gamma' \in \mathfrak{D}'$ such that $\widetilde{f} = \gamma' \circ \widetilde{f}' \circ \gamma$ and $\widetilde{g} = \gamma' \circ \widetilde{g}' \circ \gamma'$.

Proof. "Only if": By (iv), there are unique elements γ' , $\gamma'' \in \mathbb{Z}'$ such that $\widetilde{f} = \gamma' \circ \widetilde{f}' \circ \gamma$ and $\widetilde{g} = \gamma'' \circ \widetilde{g}' \circ \gamma$. Then we have $\gamma' \circ \widetilde{f}' \circ \gamma(\widetilde{x}) = \widetilde{f}(\widetilde{x}) = \widetilde{g}(\widetilde{x}) = \gamma'' \circ \widetilde{g}' \circ \gamma(\widetilde{x}) = \gamma'' \circ \widetilde{f}' \circ \gamma(\widetilde{x})$ so that $\gamma' = \gamma''$.

"If", is obvious: $\gamma' \circ \widetilde{f}' \circ \gamma(\widetilde{x}) = \widetilde{f}(\widetilde{x}) = \widetilde{g}(\widetilde{x}) = \gamma' \circ \widetilde{g}' \circ \gamma(\widetilde{x})$.

Hence $\widetilde{f}' \circ \gamma(\widetilde{x}) = \widetilde{g}' \circ \gamma(\widetilde{x})$.

Definition 2.4. Two lifting pairs $(\widetilde{f}, \widetilde{g})$ and $(\widetilde{f}', \widetilde{g}')$ of f, g are said to be conjugate if there exist $\gamma \in \mathbb{Z}$ and $\gamma' \in \mathbb{Z}$ such that $\widetilde{f} = \gamma' \circ \widetilde{f}' \circ \gamma$ and $\widetilde{g} = \gamma' \circ \widetilde{g}' \circ \gamma$. The equivalence class by conjugacy is called a lifting class.

$$[\widetilde{f}, \widetilde{g}] = \{(\gamma' \circ \widetilde{f} \circ \gamma, \gamma' \circ \widetilde{g} \circ \gamma) \mid \gamma \in \mathcal{B}, \gamma' \in \mathcal{B}'\}.$$

Theorem 2.5. (i)
$$\Gamma(f, g) = \bigcup_{(\widetilde{f}, \widetilde{g})} p \Gamma(\widetilde{f}, \widetilde{g})$$

(ii)
$$p(\widetilde{f}, \widetilde{g}) = p(\widetilde{f}', \widetilde{g}')$$
 if $[\widetilde{f}, \widetilde{g}] = [\widetilde{f}', \widetilde{g}']$

(iii)
$$p \Gamma(\widetilde{f}, \widetilde{g}) \cap p \Gamma(\widetilde{f}', \widetilde{g}') = \emptyset$$
 if $[\widetilde{f}, \widetilde{g}] \neq [\widetilde{f}', \widetilde{g}']$.

Proof. (i) $x \in \Gamma(f, g)$, then f(x) = g(x). Pick $\widetilde{x} \in p^{-1}(x)$ and $\widetilde{y} \in q^{-1}(f(x)) = q^{-1}(g(x))$, then there are unique liftings \widetilde{f} , \widetilde{g} of f, g respectively, such that $\widetilde{f}(\widetilde{x}) = \widetilde{g}(\widetilde{x}) = \widetilde{y}$ so that $\widetilde{x} \in \Gamma(\widetilde{f}, \widetilde{g})$.

Conversely, if for some \widetilde{f} and \widetilde{g} , $\widetilde{f}(\widetilde{x}) = \widetilde{g}(\widetilde{x})$ and $p(\widetilde{x}) = x$, then we have $f(x) = f \circ p$ $(\widetilde{x}) = q \circ \widetilde{f}(\widetilde{x}) = g(x)$ so that $x \in \Gamma(f, g)$.

(ii) If $\widetilde{f} = \gamma' \circ \widetilde{f}' \circ \gamma$ and $\widetilde{g} = \gamma' \circ \widetilde{g}' \circ \gamma$, then by Lemma 2.3, $\Gamma(\widetilde{f}, \widetilde{g}) = \gamma^{-1} \Gamma(\widetilde{f}', \widetilde{g}')$ so that $p\Gamma(\widetilde{f}, \widetilde{g}) = p\Gamma(\widetilde{f}', \widetilde{g}')$.

(iii) If $\mathbf{x} \in p\Gamma(\widetilde{f}, \widetilde{g}) \cap p\Gamma(\widetilde{f}', \widetilde{g}')$, then $\widetilde{f}(\widetilde{x_0}) = \widetilde{g}(\widetilde{x_0})$ and $\widetilde{f}'(\widetilde{x_1}) = \widetilde{g}'(x_1)$ for some $\widetilde{x_0}$, $\widetilde{x_1} \in p^{-1}(\mathbf{x})$. By Lemma 2.2(i), there is $\gamma \in \mathfrak{D}$ such that $\gamma(\widetilde{x_0}) = \widetilde{x_1}$ so that $\widetilde{f}'\gamma(\widetilde{x_0}) = \widetilde{g}'\gamma(\widetilde{x_0})$.

Hence we have $[\widetilde{f}, \widetilde{g}] = [\widetilde{f}', \widetilde{g}']$ by Lemma 2.4.

Definition 2.6. The subset $p\Gamma(\widetilde{f}, \widetilde{g})$ of $p\Gamma(f, g)$ is called the coincidence class of f and g determined by the lifting class $[\widetilde{f}, \widetilde{g}]$. The set of coincidence classes is denoted by $\widetilde{\Gamma}(f, g)$. The coincidence set $\Gamma(f, g)$ splits into a disjoint union of coincidence classes.

Example. If
$$\Gamma(f, g) = X$$
, then $p\Gamma(\widetilde{f}, \widetilde{g}) = \begin{cases} X, & \text{if } \Gamma(\widetilde{f}, \widetilde{g}) = \widetilde{X} \\ \emptyset, & \text{otherwise.} \end{cases}$

Theorem 2.7. $x_0, x_1 \in \Gamma(f, g)$ belong to the same coincidence class iff there is a path c from x_0 to x_1 such that $f \circ c \simeq g \circ c$ (homotopic relative to end points).

Proof. Suppose $x_0, x_1 \in p\Gamma(\widetilde{f}, \widetilde{g})$. Then $\widetilde{f}(\widetilde{x_0}) = \widetilde{g}(\widetilde{x_0})$ and $\widetilde{f}(\widetilde{x_1}) = \widetilde{g}(\widetilde{x_1})$ for some $\widetilde{x_0} \in p^{-1}(x_0)$, $\widetilde{x_1} \in p^{-1}(x_1)$. Take a path \widetilde{c} in \widetilde{X} from $\widetilde{x_0}$ to $\widetilde{x_1}$. Since \widetilde{Y} is simply connected, $\widetilde{f} \circ \widetilde{c} = \widetilde{g} \circ \widetilde{c}$.

4

Thus $f \circ c = q \circ \widetilde{f} \circ \widetilde{c} \simeq q \circ \widetilde{g} \circ \widetilde{c} = g \circ p \circ \widetilde{c} = g \circ c$ where $p \circ \widetilde{c} = c$.

Conversely, suppose $x_0 \in p\Gamma(\widetilde{f}, \widetilde{g})$, $\widetilde{x}_0 \in p^{-1}(x_0)$ and $\widetilde{f}(\widetilde{x}_0) = \widetilde{g}(\widetilde{x}_0)$. We want to prove that $x_1 \in p\Gamma(\widetilde{f}, \widetilde{g})$. By the covering path property, there is a unique covering path \widetilde{c} of c such that $\widetilde{c}(0) = \widetilde{x}_0$.

Then $\widetilde{f} \circ \widetilde{c}$ and $\widetilde{g} \circ \widetilde{c}$ are covering paths of $f \circ c$ and $g \circ c$ from $\widetilde{f}(\widetilde{x_0})$ and $\widetilde{g}(\widetilde{x_0})$, respectively. Thus $\widetilde{f} \circ \widetilde{c} = \widetilde{g} \circ \widetilde{c}$ and $\widetilde{f} \circ \widetilde{c}(1) = \widetilde{g} \circ \widetilde{c}(1)$ so that $\widetilde{f}(\widetilde{x_1}) = \widetilde{g}(\widetilde{x_1})$ and $p(\widetilde{x_1}) = x_1$, where $\widetilde{c}(1) = \widetilde{x_1}$.

Definition 2.8. A homotopy $\widetilde{F} = \{\widetilde{f_t}\}: \widetilde{X} \to \widetilde{Y} \text{ is called a lifting of the homotopy } F = \{f_t\}: X \to Y \text{ if } \widetilde{f_t} \text{ is a lifting of } f_t \text{ for each } t \in I$.

Let $F: f_0 \simeq f_l$ and $G: g_0 \simeq g_l$ be homotopies from X to Y. Given a lifting $\widetilde{f_0}$ of f_0 , there is a unique lifting \widetilde{F} of F such that $\widetilde{F}(0) = \widetilde{f_0}$, hence they determine a lifting $\widetilde{f_l}$ of f_l . Thus F gives rise to a one-to-one correspondence from lifting of f_0 to lifting of f_l .

$$\widetilde{f_0} \xrightarrow{F} \widetilde{f_1} \xrightarrow{F^{-1}} \widetilde{f_0}$$

Similarly, G gives rise to a one-to-one correspondence from liftings of g_0 to liftings of g_1 . Thus F and G give rise to a one-to-one correspondence from pairs of liftings of f_0 and g_0 to pairs of liftings of f_1 and g_1 .

$$(\widetilde{f_0}, \widetilde{f_0}) \xrightarrow{(F, G)} (\widetilde{f_1}, \widetilde{g_1}) \xrightarrow{(F^1, G^{-1})} (\widetilde{f_0}, \widetilde{g_0})$$

This correspondence preserves the conjugacy relation:

 $\{\widetilde{f_i}\}: \ \widetilde{f_0} \simeq \widetilde{f_1} \text{ implies } \{\gamma' \circ \widetilde{f_i} \circ \gamma\}: \ \gamma' \circ \widetilde{f_0} \circ \gamma \simeq \gamma' \circ \widetilde{f_1} \circ \gamma$

 $\{\widetilde{g_l}\}: \widetilde{g_0} \simeq \widetilde{g_l} \text{ implies } \{\gamma' \circ \widetilde{g_l} \circ \gamma\}: \gamma' \circ \widetilde{g_0} \circ \gamma \simeq \gamma' \circ \widetilde{g_l} \circ \gamma.$

Thus we have

Theorem 2.9. If $f_0 \simeq f_1$ and $g_0 \simeq g_1$, then there is a one-to-one correspondence between the lifting classes of f_0 and g_0 (and the coincidence classes of f_0 and g_0) and the lifting classes of f_1 and g_1 (and the coincidence classes of f_1 and g_1). Hence the number of coincidence classes is homotopy invariant.

Definition 2.10. Let $F: f_0 \cong f_1$ and $G: g_0 \cong g_1$ be homotopies from X to Y and $\widetilde{f_i}$, $\widetilde{g_i}$ be lifting of f_i , g_i , i=0, 1.

We say that the coincidence class $p\Gamma(\widetilde{f_0}, \widetilde{g_0})$ corresponds to $p\Gamma(\widetilde{f_l}, \widetilde{g_l})$ via F and G if F and

G have liftings $\widetilde{F}:\widetilde{f_0}\simeq\widetilde{f_1}$ and $\widetilde{G}:\widetilde{g_0}\simeq\widetilde{g_1}$, respectively.

Definition 2.11. Suppose F a homotopy from X to Y and c a path in X. Then $\langle F, c \rangle$ is the path in Y defined by $\langle F, c \rangle(t) = F(t)(c(t)), t \in I$.

Theorem 2.12. Suppose that $F: f_0 \simeq f_1$ and $G: g_0 \simeq g_1$ are homotopies from X to Y and $\widetilde{f_i}$, $\widetilde{g_i}$ be liftings of f_i , g_i (i=0, 1) and that $x_0 \in p\Gamma(\widetilde{f_0}, \widetilde{g_0})$ and $x_1 \in p\Gamma(\widetilde{f_1}, \widetilde{g_1})$. Then, $p\Gamma(f_0, g_0)$ corresponds to $p\Gamma(f_1, g_1)$ via F, G iff there is a path c from x_0 to x_1 such that $\langle F, c \rangle \simeq \langle G, c \rangle$ (homotopic relative to end points).

Proof. Suppose $p\Gamma(\widetilde{f}_0, \widetilde{g}_0)$ corresponds to $p\Gamma(\widetilde{f}_1, \widetilde{g}_1)$ via F, G. Then by definition, F and G have lifting $\widetilde{F}: \widetilde{f}_0 \cong \widetilde{f}_1$ and $\widetilde{G}: \widetilde{g}_0 \cong \widetilde{g}_1$, respectively. Since $x_0 \in p\Gamma(\widetilde{f}_0, \widetilde{g}_0)$ and $x_1 \in p\Gamma(\widetilde{f}_1, \widetilde{g}_1)$, $\widetilde{f}_0(\widetilde{x}_0) = \widetilde{g}_0(\widetilde{x}_0)$ and $\widetilde{f}_1(\widetilde{x}_1) = \widetilde{g}_1(\widetilde{x}_1)$ for some $\widetilde{x}_0 \in p^{-1}(x_0)$ and $\widetilde{x}_1 \in p^{-1}(x_1)$. Take a path \widetilde{c} in \widetilde{X} from \widetilde{x}_0 to \widetilde{x}_1 , then $p \circ \widetilde{c}$ is a path in X from x_0 to x_1 and $\widetilde{f}_0(\widetilde{f}, \widetilde{c})$ are paths in Y from $\widetilde{f}_0(\widetilde{x}_0) = \widetilde{g}_0(\widetilde{x}_0)$ to $\widetilde{f}_1(\widetilde{x}_1) = \widetilde{g}_1(\widetilde{x}_1)$. Since \widetilde{Y} is simply connected, $\widetilde{f}_0(\widetilde{f}, \widetilde{c})$ and $\widetilde{f}_0(\widetilde{f}, \widetilde{c})$ are homotopic. Thus $q(\widetilde{f}, \widetilde{c})$ and $q(\widetilde{f}, \widetilde{c})$ are homotopic and so are $\widetilde{f}_0(\widetilde{f}, \widetilde{c})$ and $\widetilde{f}_0(\widetilde{f}, \widetilde{c})$ where $c = p \circ \widetilde{c}$.

Conversely, let $\widetilde{F}:\widetilde{f_0}\simeq\widetilde{f}$ and $\widetilde{G}:\widetilde{g_0}\simeq\widetilde{g}$ be the liftings of F and G, respectively. Then $p\Gamma(\widetilde{f_0},\widetilde{g_0})$ corresponds to $p\Gamma(\widetilde{f},\widetilde{g})$ via F, G. We want to prove that $p\Gamma(\widetilde{f_1},\widetilde{g_1})\cap p\Gamma(\widetilde{f},\widetilde{g})$ \neq \emptyset .

Let \widetilde{c} be the unique lifting path of c^{-l} such that \widetilde{c} $(0) = \widetilde{x_l}$, where $\widetilde{x_l} \in \Gamma(\widetilde{f_l}, \widetilde{g_l})$ and $p(\widetilde{x_l}) = x_l$. Then $\langle \widetilde{F}, \widetilde{c}^{-l} \rangle$ and $\langle \widetilde{G}, \widetilde{c}^{-l} \rangle$ are unique lifting paths of $\langle F, c \rangle$ and $\langle G, c \rangle$ from $\widetilde{f_0 \circ c}$ (1) and $\widetilde{g_0 \circ c}$ (1), respectively. Since $\langle F, c \rangle = \langle G, c \rangle$, we have $\langle \widetilde{F}, \widetilde{c}^{-l} \rangle = \langle \widetilde{G}, \widetilde{c}^{-l} \rangle$ and $\langle \widetilde{F}, \widetilde{c}^{-l} \rangle = \langle \widetilde{G}, \widetilde{c}^{-l} \rangle (1)$ so that $\widetilde{f}(\widetilde{x_l}) = \widetilde{g}(\widetilde{x_l})$. Thus $p\Gamma(\widetilde{f_l}, \widetilde{g_l}) \cap p\Gamma(\widetilde{f}, \widetilde{g}) \neq \emptyset$.

Example. A non-empty coincidence class may disappear under homotopics. Consider maps $S^{l} \to S^{l}$. The universal covering is $p: R \to S^{l}$, given by $\Theta \to e^{i\Theta}$.

Let $F = \{f_t : Z \to Ze^{u \in t}\}$ and $G = \{g_t : z \to z\}$ $(\in >0)$. Taking the liftings $\widetilde{F} = \{\widetilde{f_t} : \Theta \to \Theta + t \in t\}$ and $\widetilde{G} = \{\widetilde{g_t} : \Theta \to \Theta\}$ of F and G, respectively, then $p\Gamma(\widetilde{f_0}, \widetilde{g_0}) = S^t$ but $p\Gamma(\widetilde{f_1}, \widetilde{g_1}) = \emptyset$.

Dae-Shik Chun, Chan-Gyu Jang and Sik Lee

References

- [1] R. Brooks; Coincidences, roots and fixed points, Doctoral Dissertation, Univ. of California, Los Angeles, 1967.
- [2] R. Brooks and R. Brown; A lower bound for the \triangle -Nielsen number, *Trans. AMS 143* (1969), pp.555 \sim 564.
- [3] R.F. Brown; The Lefschetz fixed point theorem, Scott Foresman, Chicago, 1971.
- [4] B.J. Jang; Lectures on Nielsen fixed point theory, Amer. Math. Society, Vol. 14, 1983.
- [5] W.S. Massey; Algebraic Topology: An introduction, Springer-Verlag, 1977.