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In this note, we shall assume that M is a closed orented Riemannian manifold of dimension
n without any statements, Let T(M) be the tangent bundle over M. For

B(M) = {ve T(M) | Ivli=1}, S(M) = {ve T(M) lvll =1}

let K(B(M), S(M)) be the relative K-groups on (B(M), S(M)).
The purpose of this note is to prove some properties of elliptic differential operators (Proposition
4, Lemma 5) and to prove that there exists a homomorphism

iy - K(B(M), S(M)) —» Z

{Theorem 7) which is induced from the Atiyah-Singer analytic indices (|21).

Let ¢ and 7 be two complex vector bundles over M. We put
eM,§) ={f:M — &|f is a C®—cross section} .

For the Sobolev norm |} lls¢ let W8(M, §) be the completion of &(M,¢) with respect to the norm
Il llg ([1]). Then we have a sequence of inclusions of the Hilbert spaces

e DWED WD L D WeH o

where W® = W8(M, ¢) ([1]). If t<s then the natural inclusion j: WM, §) — W'(M,§) is a
compietely continuous linear map. We define OPy(¢,7) the set of all C—linear map T': & (M)
- & (Mj) such that there exists the extension T : W*(M,§) — W**(M#) of T which is called
an operator of order kwhere C is the field of complexes.

We shall define a subspace Inty(£%) of OP(&,#) with the following properties (l41).
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(i) Ope1(é7) = Int (&) which is precisely the kernel of the linear symbol map
o, : Inty () — Smbl (7).
(ii) Let Diffy(é7) be the set of differential operators from e(M§) to (M) with rank k.

Then Diffi(§7) Inty(é7) and ¢ is an extension of the symbol maps Diff,(&7) -> Smbl, (7).

(iii) T € Int(én) and S € Int{n8) (¢ is a complex vector bundle over M) = ST € Inty,,
() and 6 ((ST) = ;(S)e (T).

{iv) For each T € Inty(éz) the transpose T' € Inty(76) and o (TY) = (~1)%a (T)%
{ v) There is the continuous right inverse

Xy : Smble(&7) — Inty(&7).

We define the projection by

l

r: TM) = (TM)-M) - M

and put such that &

I

n*¢ | S(M). We also use the following notations :

L(¢#) = the complex vector bundle over S(M) whose fiber at (v,x) € S(M) is the
space of all linear maps of £, into n,.

I(§,7) = the open subspace of L(f ) whose fiber at (v,x) € S(M) is all linear
isomorphisms of ¢, into #,.

H(€7) = the complex vector bundle of all C*~cross sections of L(§ 7), ie.,
Hom(§7) = C®(L(Ep))
Iso(€7) = C(1(E 7).
Definition 1. For h, € Iso(§ 7) (t € [0, 1] if there is a C®~—function h : S(M) x [0, 1] -
Iso(£ 7) defined by
h((vx),t) = h(vx)

then {hy} is called a regular homotopy of hy with h, Moreover, h, and h, are C*-regularly homotopic.

Property 2. (i) ¢ € Smbl (&) is elliptic if and only if ¢ = ¢|S(M) € Iso(f7) which is
dense in C’(I(E 7)) = (f:M - I(§z7) | f is continuous}([4]).

(i) C*(L(€ 7)) = Hom(€) is dense in C°(L(§ 7)) with is a Banach space consisting
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of all continuous cross sections of L(§ 7) with the compact open topology. Mareover, C*(I(€ 7))
is open in the locally arcwise connected Banach space CO(L(€ 7)) ([4]).

Definition 3. Let A(€7) be the set of arc components of C° (€ )) < C(L(§7)). For

CYI(E 7)) if [o] = [¢] then we say that o and ¢ are homotopic.

Propesition 4. The map
Iso(€,7) = An) (¢ - [o])

is surjective, Moreover, if [¢] = [@] (o0 € CHI(€ 7)) then they are C*—regularly homotopic.

Proof. By (ii) of Property 2 for each component ¢ of CYL(E 7)) ¢ N C(I(€zn)) is open
in C*(I1(€ #)). Moreover, since Iso(£ 77) isdense in C°(I(§ 7)) by (i) of property 2 we have an
element

o € lsoEn) NS oco o] =0

Thus, ¢ — [o] = ¢ is surjective.
Next, we have to note that C*(I(§ x[0,117 x[0,1])) is dense in C*(K& x[0,1], » x[0,1])) by
the same reason that C*(1(€ 7)) is dense in C*(I(§ 7)). Since [¢] = [’'] there exists a C*—map

h : S(M) - Iso(€ 1)
such that h, = ¢ and h, = o, Hence
h : S(M) x [01] - Iso(€ 7)

is defined by h(vx)t) = hy(vx), By Definition 1 ¢ and « are C*--regularly homotopic. / / /
We shall put such that

Ex(én) = (T € Inty(én) | o(T) is elliptic}

E(¢n) = [gE(én)  (Z=the integers)

Thus Ec(é7) N Diff(€x) is just the set of K™ order elliptic differential operators from £ to
7. We define for each elliptic operator T € Ey(én) the index Ind(T) of T by Ind(T) = dim
ker T — dim Coker T { o ([1], [4]).
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For each symbol map ¢ € Smbh(§7) we put ¢ = ¢iS(M). In this case, ¢ is elliptic if and
only if ¢ € Iso(€,7) ([4]). We have the restricted symbol map

¥ : E(&n) - Iso(é )

which is defined by 3(T) = a4(T).

Lemma 5. There is a surjective map
¢ E¢n) — Alw,

and if 4(S)=¢(T) for ST € E(¢7) then Ind(S)=ind(T).

Proof. By Proposition 4 we can find o, € Iso(§ 7) for each d, € A(én) such that [¢] =

d,. Since
Smbl(€2) - Hom(E7) (o > )

is a bipctive ([4]) there is ¢ € Smbl(é7) which is elliptic such that ¢=a, Since the sequence
0 = OP1(&7) — Int(ém) "“»Smbl(§7) > 0

is exact ([4]) there exists T € Ei(€7) such that ¢,(T)=¢ . Then
8(T)=[(T) J=[a(T) 1=[5]=[0] =0,

proving the first statement.
We assume that ¢(T)=[Z(T)]=6(S)=[3(S)]. Then by Proposition 4 3(S) and X(T) are
C®-—regularly homotopic, and thus Ind(S)=Ind(T) ([4]). ///

Progerty 6. For every elliptic differential operator D . C*(§) - C*(#) there is an elliptic differential
operator I’ with order zero such that o¢(D)=e(D’) ([4]) where o : Diff (é7) — Smbl (&%) is
the symbol map.

For each element y, € K(B(M), S(M)) there exist complex vector bundles § and » over M
and an isomorphism

g, : TEIS(M) S x%9| S(M)

such that y,=d(x*, n*0,) which is a difference element ([1],(3]). By Lemma 5 we have an
elliptic differential operator D : C®(§) - C™(n) such that «(D) is homotopic to ay(ie., [¢(D)]
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=[a,]).
Hence we have y,=d(x*, »*3, o(D)). That is, ¥, depends only on D, £ and #, and thus we
put.

Yo = ¥(D) = d*(x*€x*na(D)).

Theorem 7. There is a homomorphism
i, : K(B(M), S(M)) - 2

such that each y(D) = d(z*x*, ¢(D)) € K(B(M),S(M)) i,(7(D))=i,(D), where D : C*(¢)
— C%®(#) 15 an elliptic differential operator,

Proof. By Property 6, it suffices to consider only elliptic differential operator D with order zoro.

(i) We shall prove that y(D)==0 implies that i,(y(D))=i,(D)=0. At firtst. we assume that
o(D) extends to an automorphism of n* =%y over all of B(M). Then y(D)=0 ([3],[4]). We
want to show that i,(D)==0. Since 7:B(M) -> M is a homotopy equivalence, for some isomorphism
@:6->y (D) is homotopic to 7*p. Sine @,:C*(&) - C¥(n) is an elliptic differential operator of
~order zoro and o(g,)==n*¢|S(M) we have iy(D)=i,(ps)=0(Note that g, is an isomorphism).

Next, we shall prove that if y(D)=0 for some elliptic differential operator D of order zero then
1,(D)=0. Since there is a bundle & over M such that

oD) ® I7:606¢ S 7 0 &

extends to an isomorphism over all of B(M) ([3],1{4]). Since ¢(D)®1c= o(D®1;), by the above
reason we have i,(D®1,)=0, But

0=iy(D® 1¢)=iy(D)+is(1¢)==io(D)

since 15(1s)==0.

(ii) We assume that for elliptic operators D, and D, y(D,) = y(D,). We shall prove that i,
(Dy)=is(Dy). Let D; be elliptic of order zero such that y(Ds)==-y(D,) ([3]). Then by the lineality
of the symbol map ¢ we have

o(D,®D,)=0(D,)+a(D;)
([3]). Since

7(D@®D;)=y(D,)+7(Ds)=0
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and thus by (i)
0==1y(D,®D3)==i,(D,) +1,(D,).
Similarly, from y(D,®D;)=y(D,)+7(D;)=0 we have
0=1,(D,®Dy) =y (D,) +ia(Ds).
Hence
0==1a(Dy) +ia(Ds)=14(D;) +1,(Dy)
and thus i,(D;)=i,(D,). Therefore
1a(D)=1a(7(D))

is well-defined on K(B(M), S(M)). Moreover, by the additivity of the difference construction

iy is a homomorphism. / / /
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