Some Properties of Analytical Indices on K(B(M), S(M))

Keean Lee and Hong Jae Lee

Dept. of Mathematics, Chonju Woo Suk University, 565-800, Chonbuk, Korea. Dept. of Mathematics, Chonbuk National University, 560-756, Chonju, Korea.

In this note, we shall assume that M is a closed orented Riemannian manifold of dimension n without any statements. Let T(M) be the tangent bundle over M. For

$$B(M) = \{v \in T(M) \mid ||v|| \le 1\}, S(M) = \{v \in T(M) \mid ||v|| = 1\}$$

let K(B(M), S(M)) be the relative K-groups on (B(M), S(M)).

The purpose of this note is to prove some properties of elliptic differential operators (Proposition 4, Lemma 5) and to prove that there exists a homomorphism

$$i_a: K(B(M), S(M)) \rightarrow \mathbf{Z}$$

(Theorem 7) which is induced from the Atiyah-Singer analytic indices (|2|).

Let ξ and η be two complex vector bundles over M. We put

$$\varepsilon(M, \xi) = \{f : M \to \xi \mid f \text{ is a } C^{\infty} - \text{cross section}\}$$

For the Sobolev norm $\|\cdot\|_{s,\xi}$ let $W^s(M,\xi)$ be the completion of $\epsilon(M,\xi)$ with respect to the norm $\|\cdot\|_{s,\xi}$ ([1]). Then we have a sequence of inclusions of the Hilbert spaces

$$\cdots \supset W^s \supset W^{s+1} \supset \cdots \supset W^{s+j} \supset \cdots$$

where $W^s = W^s(M, \xi)$ ([1]). If t < s then the natural inclusion $j : W^s(M, \xi) \to W^t(M, \xi)$ is a completely continuous linear map. We define $OP_k(\xi, \eta)$ the set of all C-linear map $T : \varepsilon(M, \xi) \to \varepsilon(M, \eta)$ such that there exists the extension $T : W^s(M, \xi) \to W^{s-k}(M, \eta)$ of T which is called an *operator of order k*, where C is the field of complexes.

We shall define a subspace $Int_k(\xi,\eta)$ of $OP_k(\xi,\eta)$ with the following properties (|4|).

^{*}The present study was supporte by the Basic Science Research Institude Program, Ministry of Educations, 1991.

(i) $\operatorname{Op}_{k-1}(\xi,\eta) \leq \operatorname{Int}_k(\xi,\eta)$ which is precisely the kernel of the linear symbol map

$$\sigma_k : Int_k(\xi, \eta) \to Smbl_k(\xi, \eta)$$
.

- (ii) Let $\mathrm{Diff}_k(\xi,\eta)$ be the set of differential operators from $\varepsilon(M,\xi)$ to $\varepsilon(M,\eta)$ with rank k. Then $\mathrm{Diff}_k(\xi,\eta)$ $\mathrm{Int}_k(\xi,\eta)$ and σ_k is an extension of the symbol maps $\mathrm{Diff}_k(\xi,\eta) \to \mathrm{Smbl}_k(\xi,\eta)$.
- (iii) $T \in Int_k(\xi,\eta)$ and $S \in Int_l(\eta,\xi)$ (ξ is a complex vector bundle over M) $\Rightarrow ST \in Int_{k+1}(\xi,\eta)$ and $\sigma_{k+1}(ST) = \sigma_l(S)\sigma_k(T)$.
 - (iv) For each $T \in Int_k(\xi,\eta)$ the transpose $T^t \in Int_k(\eta,\xi)$ and $\sigma_k(T^t) = (-1)^k \sigma_k(T)^*$.
 - (v) There is the continuous right inverse

$$X_k : Smbl_k(\xi, \eta) \rightarrow Int_k(\xi, \eta)$$
.

We define the projection by

$$\pi: T'(M) = (T(M)-M) \rightarrow M$$

and put such that $\tilde{\xi} = \pi^* \xi \mid S(M)$. We also use the following notations:

- $L(\xi,\eta)$ = the complex vector bundle over S(M) whose fiber at $(v,x) \in S(M)$ is the space of all linear maps of ξ_x into η_x .
- $I(\tilde{\xi},\tilde{\eta})$ = the open subspace of $L(\tilde{\xi},\tilde{\eta})$ whose fiber at $(v,x) \in S(M)$ is all linear isomorphisms of ξ_x into η_x .

$$H(\tilde{\xi},\tilde{\eta})$$
 = the complex vector bundle of all C^{∞} -cross sections of $L(\tilde{\xi},\tilde{\eta})$, i.e., $Hom(\tilde{\xi},\tilde{\eta}) = C^{\infty}(L(\tilde{\xi},\tilde{\eta}))$

$$Iso(\tilde{\xi},\tilde{\eta}) = C^{\infty}(I(\tilde{\xi},\tilde{\eta})).$$

Definition 1. For $h_t \in Iso(\tilde{\mathfrak{t}},\tilde{\eta})$ $(t \in [0, 1]$ if there is a C^{∞} -function $h: S(M) \times [0, 1] \rightarrow Iso(\tilde{\mathfrak{t}},\tilde{\eta})$ defined by

$$h((v,x),t) = h_t(v,x)$$

then $\{h_t\}$ is called a regular homotopy of h_0 with h_1 . Moreover, h_0 and h_1 are C^{∞} -regularly homotopic.

Property 2. (i) $\sigma \in \mathrm{Smbl}_k(\xi,\eta)$ is elliptic if and only if $\tilde{\sigma} = \sigma|S(M) \in \mathrm{Iso}(\tilde{\xi},\tilde{\eta})$ which is dense in $C^0(I(\tilde{\xi},\tilde{\eta})) = \{f : M \to I(\tilde{\xi},\tilde{\eta}) \mid f \text{ is continuous}\}([4])$.

(ii) $C^{\infty}(L(\tilde{\xi},\tilde{\eta})) = \text{Hom}(\tilde{\xi},\tilde{\eta})$ is dense in $C^{0}(L(\tilde{\xi},\tilde{\eta}))$ with is a Banach space consisting

of all continuous cross sections of $L(\tilde{\mathfrak{E}},\tilde{\eta})$ with the compact open topology. Moreover, $C^0(I(\tilde{\mathfrak{E}},\tilde{\eta}))$ is open in the locally arcwise connected Banach space $C^0(L(\tilde{\mathfrak{E}},\tilde{\eta}))$ ([4]).

Definition 3. Let $\triangle(\tilde{\xi},\tilde{\eta})$ be the set of arc components of $C^{\circ}(I(\tilde{\xi},\tilde{\eta})) \subset C^{\circ}(L(\tilde{\xi},\tilde{\eta}))$. For each $\sigma \in C^{\circ}(I(\tilde{\xi},\tilde{\eta}))$ let $[\sigma]$ be the arc component in $\triangle(\tilde{\xi},\tilde{\eta})$ to which σ belongs. For σ , $\sigma' \in C^{\circ}(I(\tilde{\xi},\tilde{\eta}))$ if $[\sigma] = [\sigma']$ then we say that σ and σ' are homotopic.

Proposition 4. The map

$$\operatorname{Iso}(\widetilde{\xi},\widetilde{\eta}) \to \triangle(\xi,\eta) \ (\sigma' \to [\sigma])$$

is surjective. Moreover, if $[\sigma] = [\sigma']$ $(\sigma, \sigma' \in C^0(I(\tilde{\xi}, \tilde{\eta})))$ then they are C^{∞} -regularly homotopic.

Proof. By (ii) of Property 2 for each component δ of $C^0(L(\tilde{\xi},\tilde{\eta}))$ $\delta \cap C^0(I(\tilde{\xi},\tilde{\eta}))$ is open in $C^0(I(\tilde{\xi},\tilde{\eta}))$. Moreover, since $Iso(\tilde{\xi},\tilde{\eta})$ is dense in $C^0(I(\tilde{\xi},\tilde{\eta}))$ by (i) of property 2 we have an element

$$\sigma \in \operatorname{Iso}(\widetilde{\xi},\widetilde{\eta}) \cap \delta \circ \in \circ [\sigma] = \delta.$$

Thus, $\sigma \rightarrow [\sigma] = \delta$ is surjective.

Next, we have to note that $C^{\infty}(I(\tilde{\xi} \times [0,1], \tilde{\eta} \times [0,1]))$ is dense in $C^{0}(I(\tilde{\xi} \times [0,1], \tilde{\eta} \times [0,1]))$ by the same reason that $C^{\infty}(I(\tilde{\xi}, \tilde{\eta}))$ is dense in $C^{0}(I(\tilde{\xi}, \tilde{\eta}))$. Since $[\sigma] = [\sigma']$ there exists a C^{∞} -map

$$h_i: S(M) \to Iso(\tilde{\epsilon}, \tilde{n})$$

such that $h_0 = \sigma$ and $h_1 = \sigma$. Hence

$$h: S(M) \times [0,1] \rightarrow Iso(\tilde{\xi}, \tilde{\eta})$$

is defined by $h(v,x),t)=h_t(v,x)$. By Definition 1 σ and σ' are C^∞ -regularly homotopic. / / We shall put such that

$$E_k(\xi,\eta) = \{T \in Int_k(\xi,\eta) \mid \sigma_k(T) \text{ is elliptic}\}$$

and

$$E(\xi,\eta) = \bigcup_{k \in \mathbb{Z}} E_k(\xi,\eta)$$
 (Z=the integers)

Thus $E_k(\xi,\eta) \cap \operatorname{Diff}_k(\xi,\eta)$ is just the set of K^{th} order elliptic differential operators from ξ to η . We define for each elliptic operator $T \in E_k(\xi,\eta)$ the index $\operatorname{Ind}(T)$ of T by $\operatorname{Ind}(T) = \dim \ker T - \dim \operatorname{Coker} T \subset \infty$ ([1], [4]).

For each symbol map $\sigma \in \mathrm{Smbl}_k(\xi,\eta)$ we put $\widetilde{\sigma} = \sigma|S(M)$. In this case, σ is elliptic if and only if $\widetilde{\sigma} \in \mathrm{Iso}(\widetilde{\xi},\widetilde{\eta})$ ([4]). We have the restricted symbol map

$$\sum : \mathbb{E}(\xi,\eta) \to \mathrm{Iso}(\widetilde{\xi},\widetilde{\eta})$$

which is defined by $\sum(T) = \tilde{\sigma}_k(T)$.

Lemma 5. There is a surjective map

$$\delta : E(\xi,\eta) \to \triangle(\xi,\eta),$$

and if $\delta(S) = \delta(T)$ for $S, T \in E(\xi, \eta)$ then Ind(S) = Ind(T).

Proof. By Proposition 4 we can find $\sigma_0 \in \operatorname{Iso}(\tilde{\xi}, \eta)$ for each $\delta_0 \in \triangle(\xi, \eta)$ such that $[\sigma_0] = \delta_0$. Since

$$Smbl_k(\xi,\eta) \to Hom(\widetilde{\xi},\widetilde{\eta}) \ (\sigma \mapsto \widetilde{\sigma})$$

is a bijective ([4]) there is $\sigma \in \text{Smbl}_k(\xi, \eta)$ which is elliptic such that $\tilde{\sigma} = \sigma_0$. Since the sequence

$$0 \to \mathrm{OP}_{k+1}(\xi,\eta) \to \mathrm{Int}_k(\xi,\eta) \xrightarrow{\sigma_k} \mathrm{Smbl}_k(\xi,\eta) \to 0$$

is exact ([4]) there exists $T \in E_k(\xi,\eta)$ such that $\sigma_k(T) = \sigma$. Then

$$\delta(T) = [\Sigma(T)] = [\delta_k(T)] = [\delta] = [\delta_0] = \delta_0$$

proving the first statement.

We assume that $\delta(T) = [\Sigma(T)] = \delta(S) = [\Sigma(S)]$. Then by Proposition 4 $\Sigma(S)$ and $\Sigma(T)$ are C^{∞} -regularly homotopic, and thus Ind(S) = Ind(T) ([4]). //

Property 6. For every elliptic differential operator $D: C^{\infty}(\xi) \to C^{\infty}(\eta)$ there is an elliptic differential operator D' with order zero such that $\sigma(D) = \sigma(D')$ ([4]) where $\sigma: \text{Diff}_k(\xi,\eta) \to \text{Smbl}_k(\xi,\eta)$ is the symbol map.

For each element $\gamma_0 \in K(B(M), S(M))$ there exist complex vector bundles ε and η over M and an isomorphism

$$\sigma_0: \pi^{\bullet} \in S(M) \stackrel{\cong}{\Rightarrow} \pi^{\bullet} \eta \mid S(M)$$

such that $\gamma_0 = d(\pi^*\xi, \pi^*\eta, \sigma_0)$ which is a difference element ([1],[3]). By Lemma 5 we have an elliptic differential operator $D: C^{\infty}(\xi) \to C^{\infty}(\eta)$ such that $\sigma(D)$ is homotopic to σ_0 (i.e., $[\sigma(D)]$

 $=[\sigma_0]$).

Hence we have $\gamma_0 = d(\pi^* \xi, \pi^* \eta, \sigma(D))$. That is, γ_0 depends only on D, ξ and η , and thus we put.

$$\gamma_0 = \gamma(D) = d^*(\pi^*\xi, \pi^*\eta, \sigma(D)).$$

Theorem 7. There is a homomorphism

$$i_a : K(B(M), S(M)) \rightarrow Z$$

such that each $\gamma(D) = d(\pi^*\xi, \pi^*\eta, \sigma(D)) \in K(B(M), S(M))$ $i_a(\gamma(D)) = i_a(D)$, where $D : C^{\infty}(\xi) \to C^{\infty}(\eta)$ is an elliptic differential operator.

Proof. By Property 6, it suffices to consider only elliptic differential operator D with order zoro. (i) We shall prove that $\gamma(D)=0$ implies that $i_a(\gamma(D))=i_a(D)=0$. At first, we assume that $\sigma(D)$ extends to an automorphism of $\pi^*\xi \cong \pi^*\eta$ over all of B(M). Then $\gamma(D)=0$ ([3],[4]). We want to show that $i_a(D)=0$. Since $\pi:B(M)\to M$ is a homotopy equivalence, for some isomorphism $\varphi:\xi\to\eta$ $\sigma(D)$ is homotopic to $\pi^*\varphi$. Sine $\varphi_*:C^\infty(\xi)\to C^\infty(\eta)$ is an elliptic differential operator of order zoro and $\sigma(\varphi_*)=\pi^*\varphi(S(M))$ we have $i_a(D)=i_a(\varphi_*)=0$ (Note that φ_* is an isomorphism).

Next, we shall prove that if $\gamma(D)=0$ for some elliptic differential operator D of order zero then $i_a(D)=0$. Since there is a bundle ξ over M such that

$$\sigma(D) \oplus 1_{\widetilde{c}} : \widetilde{\xi} \oplus \widetilde{\zeta} \cong \widetilde{n} \oplus \widetilde{\zeta}$$

extends to an isomorphism over all of B(M) ([3],][4]). Since $\sigma(D) \oplus 1_{\xi} = \sigma(D \oplus 1_{\xi})$, by the above reason we have $i_a(D \oplus 1_{\xi}) = 0$. But

$$0=i_a(D\oplus 1_c)=i_a(D)+i_a(1_c)=i_a(D)$$

since $i_a(1_s)=0$.

(ii) We assume that for elliptic operators D_i and D_2 $\gamma(D_1) = \gamma(D_2)$. We shall prove that i_a $(D_1) = i_a(D_2)$. Let D_3 be elliptic of order zero such that $\gamma(D_3) = -\gamma(D_1)$ ([3]). Then by the lineality of the symbol map σ we have

$$\sigma(D_1 \oplus D_3) = \sigma(D_1) + \sigma(D_3)$$

([3]). Since

$$\gamma(D_1 \oplus D_3) = \gamma(D_1) + \gamma(D_3) = 0$$

6

and thus by (i)

$$0=i_a(D_1\oplus D_3)=i_a(D_1)+i_a(D_3).$$

Similarly, from $\gamma(D_2 \oplus D_3) = \gamma(D_2) + \gamma(D_3) = 0$ we have

$$0=i_a(D_2\oplus D_3)=i_a(D_2)+i_a(D_3)$$
.

Hence

$$0=i_a(D_1)+i_a(D_3)=i_a(D_2)+i_a(D_3)$$

and thus $i_a(D_1)=i_a(D_2)$. Therefore

$$i_a(D) = i_a(\gamma(D))$$

is well-defined on K(B(M), S(M)). Moreover, by the additivity of the difference construction i_a is a homomorphism. ///

References

- [1] H. Lee and K. Lee; Sheaf Theory, Complex Manifolds, Index Theorem, Hyong-Soel Book Company (1983).
- [2] H. Lee, W. Jeon and K. Shon; A Note on Analytic Indices, to appear.
- [3] K. Lee: Fundations of Topology, Vol.2, Hakmoon-Sa, Korea (1983).
- [4] R. S. Palais; Seminar on the Atiyha-Singer Index Theorem, Princeton Univ. Press (1965).