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A GENERAL THEORY OF SOME
NEGATIVE DEPENDENCE NOTIONS

TAE SUNG KIM AND HYuN CHULL KIM

1. Introduction

The concept of association was introduced into the statistical litera-
ture by Esary, Proschan, and Walkup(1967). Since then a great many
papers have been written on the subject and its extensions, and numer-
ous multivariate inequalities have been obtained.

It is well known(see Esary et al. {2]) that X is associated if and only
if

(1.1) P(X eANB)2P(X €A)P(X€B)

whenever A and B are open upper sets(U is an upper set if x € U and y
> x imply y € U). In addition, Shaked(1982) find that a possible way of
weakening the condition of association is to require that (1.1) holds for
all A and B which belong to a subcollection of the collection of all open
upper sets, that is, let A and B be two collections of sets in R™ then the
random vector X is positively dependent relative to A and B(denoted by

PD(A, B)) if
(1.2) P(X€ANB)>P(XeAP(XeB)

whenever A € A and B € B.

Joag-Dev and Proschan(1983) introduced the notions of negative asso-
ciation, derived basic theoretical properties, and developed applications
in multivariate statistical analysis. It is well known that the X’s are
negatively associated then they are negatively upper orthant dependent
(NUOD) and negatively lower orthant dependent (NLOD )(see Joag-Dev
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and Proschan [3]). Various results in probability and statistics have been
derived under the assumption that some underlying random variables are
negatively associated. In some cases(see, e.g Remark 3.3) , a careful in-
spection of the proofs of these results indicates that the results are valid
even if one weakens the assumption of negative association, however,
the validity of the proofs may be violated if instead of the assumption of
negative association one merely assumes NUOD or NLOD. Thus, various
notions of negative dependence, which are between negative association
and the orthant dependence notions may be useful.

The purpose of this paper is to derive various notions of negative
dependence which are weaker than negative association but stronger
than negative orthant dependence by using arguments similar to those
of Shaked(1982) and to investigate their interrelationships motivated by
(1.1) and (1.2).

The general propositions and some definitions are given in Section 2.
In Section 3 the specialized negative dependence are developed and their
interrelationships are derived from the concepts of the general proposi-
tions . In Section 4 we introduce some concepts of functional negative
dependence(FND) and show that for j=1,...,5 the notion of ND(4;) es-
sentially implies the notion of FND(F;).

2. Definitions and General Propositions

DEFINITION 2.1. (Joag - Dev and Proschan, 1983). A random vector
X = ( Xy,-..,X,) is said to be negatively associated (NA) if for every
pair of partitions X; = ( Xp(1), - » Xa(k)) and X2 = ( Xp(k41)s - - Xa(n))
of X, and for every pair of increasing functions f:R¥ — R, gzR"" % —

R
(2.1) Cov(f(X;),9(X,y)) <0
whenever 7 is any permutation of {1,... n}, 1<k <n-1

DEFINITION 2.2. (Joag - Dev and Proschan, 1983). A random vec-
tor X = ( Xy,...,X,) is said to be negatively upper orthant dependent
(NUOD) if for every real vector x = (X1,...,Xn),

(2:2) P(X >x) < f[ P(X; > x:)
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and it is negatively lower orthant dependent(NLOD) if for every real
vector X = ( X1,--- »Xn),

(2.3) P

P(X <x) Sf[ (X; <x3)

Moreover, if X is NUOD and NLOD then X is negatively orthant
dependent(NOD). When n = 2 then X = (X;,X;) is NUOD if and only if

X is NLOD(see Lehmann [5]); we say then that X is negatively quadrant
dependent(NQD).

DEFINITION 2.3. (Joag - Dev, 1983). A random vector X is said to
be linearly negatively quadrant dependent(LNQD) if for every pair of
nonnegative vectors r = (ry,...,I'x) , 8 = (S1,--.,Sp~k) and every pair of
partitions X; = (X,,(l),. .. .,r(]\)) Xy = (X (k+1)s- - ,X,,(n)) of X, r Xy,
s - X5 is NQD whenever 7 denotes any permutation of { 1,...,n } and k
=1,...,n1

The concept of LNQD is similar to one of negative dependence which
will be discussed in later section (see Theorem 3.4).

Motivated by (1.1) we have the following equivalent notion of negative
association.

PROPOSITION 2.4. A random vector X = ( Xi,...,X,) is negatively
associated if and only if for every pair of partitions X; = (Xx1), . . , Xn()),
Xo = (Xn(k+1),. .- 7X7r(n)) of X
(2.4) P(X, € A,X, € B) < B(X, € A)P(X, € B)
whenever A and B are open upper sets, 1 < k < n-1, and 7 is any
permutation of { 1,...,n }.

Proof. We only show the converse: let m be any permutation of {

.11 }, Xl - ( Xw(l)v- SR Xﬂ'(k)) , Xg = ( X1r(k+1)7‘ . aXTr(n)) be arbi-
trary partitions of X, and {, g be arbitrary increasing functions of X; ,
X, , respectively. Then for every real s and t, A = { f (X;) > s } and
B = { g (X;) >t } are open upper sets. Thus

P(f(X,) >s,9(X,) >t)=P(X, € 4,X, € B)
(2.5) <P(X, € A)P(X, € B)

=P(f(X1) > s)P(9(X;) > 1).
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Define
X((s) = { 1 if f(Xy) > s X,(t) = { 1 if g(X2) >t.

0 otherwise, 0 otherwise

Then
(2.6)
Cov(f(X,),9(X2))

/ / Cov(Xf(s), Xy(t))dsdt
=[] sexe) - ExgEx 0] dsa

/ / P(F(X1) > ,9(X,) > 1) — P(F(X,) > $)P(g(Xy) > )] ds dt
Thus (2.5) and (2.6) yield Cov( f(X1), 9(X2)) < 0.

A possible way relaxing the condition of negative association is to
require that (2.4) holds for all A and B which belong to subcollections
of the collection of all upper sets in R¥ and R*~¥, respectively. This will
be the approach in this paper.

Let A®) be a collection of sets in RF and A(*~%) be a collection of
sets in R"™* ( k = 1,...,n-1).

DEFINITION 2.5. A random vector X = (Xj,...,X,) is negatively
dependent relative to A% and A("~%) ( denoted by ND(AK) A(r—k)))
if for any partitions X; = (Xr(1)»--» Xary)> X2 = (Xak41)r - -+ Xa(n))
of X

(2.7) P(X, € 4,X, € B) <P(X, € A)P(X, € B)

whenever A € A% and B € A"~ 7 is any permutation of { 1,...,n }
and a random vector X is negatively dependent relative to A(®) (denoted
by ND(A)) if (2.7) holds for every k, where k = 1,... n-1.

The following general propositions of negative dependence are mo-
tivated by those of positive dependence in Shaked(1982) but those are
not duals of them, that is, in negative dependence case, we split the
random vector into two subvector and consider the concepts of the neg-
ative dependence between them with the argument similar to that of
Shaked(1982). These are easy to prove and will be used in later section.
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PROPOSITION 2.6. If A®) ¢ AW and A% « A(»=%) then ND(A®
, A=k} implies ND(A®), A®=%)) and if A®) c AW k=1,2,. . n-1,
then ND(A(™ ) implies ND(A™).

Put A® = {A: A € A®) }(A denotes the complement of A in RF)
and —A® = {A: -~ A € AD }(~ A denotes { X: —X € A }).

PROPOSITION 2.7. The random vector X is ND(A®), A("=¥)) if and
only if X is ND(A®, A(»=*)) and the random vector X is ND(A™ ) if
and only if X is ND(A™)

Proof. Assume that X is ND(A®), A("=F) for some k( k = 1,...,n-1
)- Let 7 be any permutation of {1,...,n } and X; = (Xx1)s - » X (k)
Xo= (Xz(k+1)» -+ » Xx(n)) be any pair of partitions of X. Then for every
A e A® and B € A0

Since, in general,
P(X; € 4, X, € B)=1-P(X, € 4)-P(X, € B)+P(X, € 4,X, € B)

(2.8) yields P(X; € 4, X, € B) < P(X, € 4) P(X, € B).
The converse is proved in the same way as above. Since (2.8) holds
for every k(k = 1,...,n-1) X is ND(A™) if and only if X is ND(A™). t

PROPOSION 2.8. The random vector X is ND(A®), A=) if and
only if — X is ND(—A® | — A"} and X is ND(A™) if and only if —
X is ND(—A™),

REMARK 2.9. From Propositions 2.7 and 2.8 it follows that if for

every k A® equals A% then X is ND(A™) if and only if —X is
ND(—-A™).
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3. Concepts of Negative Dependence

The following collections of upper sets in R®) will be appeared in
most of the following discussion (See Shaked(1982)).

(1) Let Agk) be the collection of all open upper orthants in R"”, that is,
A € AP if and ouly if
(3.1) A={z:2; >a; i=1,...,n}

for some a; € [—o00,00],t =1,...,n.
(2) Let Agk) be the collection of all open upper half spaces, that is, A
€ Aék) if and only if

(3.2) A= {I : Za,‘l‘i > ao}
=1

for some ay € [—o00,00]and a; € [0,00],1 =1,...,n.
(3) Let A:(;k) be the collection of all sets of the form

(3.3.1) A= (1 U #:2a>aq}

1<B<y a€Cy

for some a; € [—00,00],7 =1,--- ,n, or of the form

(3.3.i1) A= U (‘] {z:24 > aq}

1<B<6 a€Pp
for some a; € [~o00,00],i = 1,--- ,n, where, for some positive integers v
and §,CgC{1l,...,n},8=1... ,vyandPgC {1l,... ,n}, f=
1,...,6.

(4) Let Agk) be the collection of all convex open upper sets in RF.
(5) Let .Agk) be the collection of all open upper sets in RF.
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REMARK 3.1. (1). From Proposition 2.4 it follows that random vari-
ables Xy, ..., X,, are negatively associated if and only if X;, ..., X, is
- ND(AM).

(2). From Proposition 2.6 it follows that

ND(A™)

/ \
ND(A™) ND(A)
% N 7
ND(ASY) ND(A™)

Some of the results of Section 2 can be specialized now to the notions
of this section as follows. Since for j = 2,3,5, ﬂg") = —A;-n) Theorem
3.1 is obtained from the Remark 2.9 following Proposition 2.8

THEOREM 3.1. For j = 2,3,5, X is ND(A”) if and only if — X is
ND(A™).

THEOREM 8.2. (a) For j = 1,3,4,5, if X is ND(A'™) then X is NUOD.
(b) For j = 1,3,4,5, if X is ND(~AS™) then X is NLOD.

Proof. (a). By Remark 3.1, preceding Theorem 3.1 it is enough to
prove (a) for j = 1. Let X = (X;,...,X,). Note that X is ND(A(lk),A(ln“k))
forevery k ( k = 1,...n-1):

When k = 1 take X; = ( X; ) and X5 = ( X,,...,X,) as a partition
of X and take a; = (a;) and az = (ag,...,a,) as a partition of a, then

E(JYI >a1,... 7Xn > an)
=P(X >a)= P(X, >2a.,X,> a,) < E(Xl > @1)‘1.)(}5—.2 > @2)
= P(X; > a1 )P(X2 > as,... , X, > a,)

When k = 2 take X, = (X, X3) and Xy = (X3,...,X,;) as a partition of

X and take a; = (a;,a2) and a; = (as,...,a,) as a partition of a, then

P(X:>ay,...,X,>a,)

P(X, >2.,X; > a,)

< P(X; >2a)P(X; > a,)

E(V.Xl > al,.Xg > ag)E(.X3 > ag,... ,Xn > a,n).

]

(3.4)
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By choosing a; = —oo in (3.4) we obtain
P(X; > az,...,Xn>a,) < P(X2 > a2)P(Xs > as,... , X, > an)

We proceed by induction and finally,

When k = n-1 take X; = (Xy,...,X,_1) and X; = (X,,) as a partition
of X and take a; = (a,...,2,—1) and a; = (an) as a partition of a, then
(3.5)

E(Xl > ag,. .. s-Xn > a-n) = E(X] > §1v>_(2 > @2)

S P(X; > 2)B(X2 > ay)
=P(X; > ay,... s Xn—1 > an—l)E(Xn > an)

By choosing a; = —o0, ...,ap—2 = —0o0 in (3.5) we obtain
E(—Yn—l > ap—1,-. -JYn > a"n) S E(—X’n—-l > an—l)E(-Xn > an)'

Producting the above inequalities side by side and cancelling the common
terms we obtain

P(X; > a1,..., X0 >an) < [[P(Xi > )

=1
(b). Since for j = 3,4,5, —A; D —A; it is enough to prove (b) for j = 1:
Xis ND(—A;) = —Xis ND(A,)
= —Xis NUOD by (a)
= —Xis NLOD.

REMARK 3.2. Theorem 3.2 indicates that for j = 1,34, ND(.A;")) no-
tions are weaker than negative association and stronger than the orthant
dependence notion.

THEOREM 3.3. For j = 34,5, (a). if X is ND(AY") then X is NLOD.
(b). if X is ND(—A") then X is NUOD.

Proof. The proof is simlar to the proof of (c), (d) of Theorem 3.3 in
Shaked(1982) 1

Theorems 3.2 and 3.3 do not say anything about the ND(.A;") ) family.
However, we have the following theorem from Definition 2.3 and (3.2).
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THEOREM 3.4. X is ND(AYY) if and only if X is LNQD.

THEOREM 3.5. Forj=1,..,5, if X is ND(A™) then (Xay, - - -, Xar )
is ND(A;m)) whenever { a1, ...,am } C{1,...,n}.

Proof. For j = 1,3,4,5, if for every set A € A_g") and for every subset
{ai, ...;am } C{1,...,0} (m < n), then the set {(Xq,, .-, Xa,,) :
(X1, ..., X5) € A } belongs to .A;-m). Also it can be seen that by setting
the appropriate a; in (3.2) equal to zero the above property holds for j
=2 Thusforj=1,..,5if X is ND(A;-")) then every subvector ( X,,,

. Xa,, )of Xis ND(Agm)), where { a1, ..., ap } C{1,...,n}. }

COROLLARY 3.6. Let X = ( X,,...,X, ) be an ND(.A;")) n-variate
random vector for j = 1,3,4,5, then for every A;, A, disjoint subsets of
{1,...n}, and x1,..., xp real

P(Xi>xi,1=1...,n)<P(X;>x;,1€ A )P(X; >x;,j €
A2 )

REMARK 3.3. (1). When n = 2 it follows that NQD & ND(A™),
ND(Ag"’) & ND(.A(I")) and hence for j = 1,...,5, ND(Ag")) are equiva-
lent.

(2). By combining Theorem 3.4 and the proof of Theorem 10 of Newman

(1984) it can be shown that if X = (X;,...,X;) are ND(.AS_,")) finite
variance random vector with joint and marginal charcteristic functions,
¢ and ¢;, j=1,...,n; then

lvl»-J

(3.6) lé(r1,...,ra)— H¢j(7‘ Z Z 7 jllre] Cov(X;, Xk).
=1 1< k<n

From Remark 3.1 it follows then that for j = 2,4,5, if X;,...,X,, is

ND(A;") ) and if the X’s are uncorrelated then X,,...,X, are jointly
independent.
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4. Concepts of Functional Negative Dependence

In many instance(see Section 3 of Shaked(1982)) if a random vector
X is PD( A, B) then there exist two families of real functions F and G
such that

(4.1) Cov(f(X),9(X)) > 0 whenever f€ F,g€ G

provided the expectations exist. When X satisfies (4.1) Shaked(1982)
said that X is functionally positive dependent relative to F and G (de-
noted by FPD(F,G)). Motivated by (4.1) we introduce the functional
negative dependence as follows: Let X; = (Xz(),- ... Xx@)) and Xz =
(Xa(k+1)s - - - »Xn(n)) be any partition of X = (X;,...,X,), 1 £k <n-1,
and 7 be any permutation of { 1,2,...,n }. In many instance, if X is
ND(A™, A(»=k)) then there exist a family of real k-variate functions
F®) and a family of real n—k variate function F(®~*) such that

(4.2) Cov(f(X,),9(X,)) < 0 whenever f € F¥ g e Flin=k

provided the expectations exists.

DEFINITION 4.1. If the random vector X satisfies (4.2) we say that X
is functionally negative dependent relative to F*) and F(*~*) (denoted
by FND(F® | Fn=k) y ) and if X satisfies (4.2) for every k( k = 1,...
,n-1 ) X then is functionally negative dependent relative to (") (denoted
by FND(F{™)).

_Prorosition 4.2. If F&) ¢ F*) and Fn=8 c F=F) then FND
(F&  Fr=8 ) implies FND (F®*) F(r=k) ) and if Fk) < F&),
k=1,...,n-1, then FND(F'™ ) implies FND (F" ),

Consider now the following collections of increasing functions in R™

orin R? = {z:2z > 0} which will be appeared in most of the following
discussion (see Shaked(1982)).

(1) Let ]-'1( ™ be the collection of all functions, defined on RY, of the form

(4.2) flz)= lgl_iél {b; z;} for some b; € [0, 0],
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(2) Let fé") be the collection of all funcions, defined on R}, of the form

(4.3) f(m)zz a;z; for some a; € [0,00],i=1...,n
1=1

(3) Let fé") be the collection of all functions, defined on R}, of the form

(443) f(z)= 11511;5151—1 é’é%’j boro for some b; € [0,00],i=1,---,n

or of the form

(4441) f(z)= oex, ;’21}% bo zo for some b; € [0,00),i =1,--- ,n

where, for some positive integer v and §, Cg € { 1,...,n }, = 1,...,v
andPge{l,...n},B8=1,...,6

(4) Let f,f") be the collection of all concave increasing functions on R™
(or on R} when we deal with nonnegative random vectors).

(5) Let fé") be the collection of all measurable increasing functions on
R™ (or on R} when we deal with nonnegative random vectors).

In the following the superscript n on the F’s will be omitted when
there is no danger of a confusion.

REMARK. (1). From (5) and Definition 4.1 it follows that X = (
X1, ..,X, ) is negatively associated(NA) if and only if X is FND(.?*';")
).

(2). It follows that for j = 1,...,5, if X is FND(F{™ ) then every m-
variate subvectors of X (m < n ) is FND(}"}"‘) )-
(3). From Proposition 4.2 it follows that

FND(F™)

e .
FND(FM™) FND(F™)
/ N
FND(F™) FND(F™)y

Now we are going to show that for j = 1,...,5, the notion of ND(A;"))
essentially implies the notion of FND(F J( ") ). First the following Lemma

which characterizes ND(A;")) is proven.
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LEMMA 4.3. Forj=1,..,5 X is ND(A" ) if and only if for arbitrary
pa.rtitions Xl = (Xﬂ.(l),... 7X7r(k) ), Xg = (Xw(k-i-l)r 7X1r(n)) OfX s, T
be any permutation of { 1,...,n } andevery k (k=1,...,n-1)

(4.6) P(f(Xy) > s,9(X,) > t) < P(f(Xy) > s)P(g(X3) > t)
whenever f€ f;k), ge fj(-n_k) provided X is nonnegative. Without the
nonnegativity assumption, (4.6) holds for j = 2,4,5.

Proof. When j = 1 and X > 0 then the x’s in (3.1) are nonnegative
and for every k(k = 1,...,n-1) A € Agk), Be Ag"_k) if and only if A =
{ X1 : min b; Xy, > s} forsomes € [ —00 ,00]and b; >0, j =

1<<k
1,,...kand B ={ X, : k+IlnS1?$n ¢; Xny >t} for some t € [ —o0, oo
Jand ¢; >0, j = k+1,...,n. Let {(X;) = 1r<nf121k { b;X;;) } for some
<5<k
b; € [ 0,00 ] and g(X3) = min_  { ¢; Xy } for some ¢; € [ 0,00 ].
k+1<j<n

Then from definition of ND(A&M) for every k( k = 1,... n-1 ) P(f(Xy)
>s, g(X2) >t)=P(X; €A, X, € B) <P(X; €A)P(X; € B) =
P(£(X1) >s)P(gXa) >t )forfe 7P g e 77" thus (4.6) holds.
When j = 2 then (4.6) follows directly from the definition of ND(.Ag") )s
(see (3.2)). When j = 3 and X > 0 then, to construct sets in .Agk) and

Ag”"") we consider in (3.3.1) or in (3.3.ii) only the sets for every k
(4.7) {X, : b;Xay > 1}

for some je€ {1,... .k } and by € [0, 0], and

(4.8) {Xy: ¢ X0 > 1}

for some j€ { k+1,....n} and ¢; € [ 0,00].
By taking unions and intersections of sets of the form (4.4) and (4.5),
respectively. We obtain sets of the form

(4.9) {X,: f(Xy) > 1}
for some fof the form (2.12) or (2.13) and

(4.10) {X;:9(X,) > 1}
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for some gof the form (2.12) or (2.13) that is, A € Agk) and B € A"
if and only if A is of the form (4.9) and B is of the form (4.10). Using the
homogeneity and nonnegativity of (4.9) and (4.10), finally we observe for
every k(k =1,...n-1 )A€ Agk) and B € Agn—k) if and only if A = {
X;: f(Xy) >b } for somef € ]-_ék) and some b € [0,00] and B = { X,
: g(X3) > ¢ } for some g € }.3(.11—1.') and some ¢ € [0,00]. Thus by the
definition of ND(A{™) for every k( k = 1,....n-1) P( X; € A, X, € B)
< P(X, € A) P(X, € B) if and only if P( f(X,) > b, g(Xa) > ¢ ) < P(
f(X1) > b) B( g(X2) > ¢ ) for fe 1, ge F" 7Y

When j = 4, first assume that X satisfied (4.6). Let 7 be any permu-
tation of { 1,. N &3 }, )_(1 = ( X,‘.(l), ey Xﬂ(k) ) and Xg = ( X,r(k+1),
Xr(n)) be arbitrary partitions of X and A and B in Agk) and Ag""",
respectively. Since A and B are convex, open and upper sets they can
be approximated by intersections of sets of the form

k
{X: z ajXnj) > 1}, wherea; > 0,7 =1,...,k,
=1

and

n
{X,: Z b;j Xy > 1}, whereb; > 0,7 =1,...,n,
j=k+1
Explicitly, for every ¢ > 0 there exist ; and K, such that
k
IP(X; € 4)=P( min > al’X,; >1)<e

1<IKK, 4
- =1

where agl) >0,1i=1,....k;1=1,..K;and
P(X, € B)-P( min_ Yy bPx,; >1)<e

s 1<I<Ny |
- 7=k+1

where bg“ >0,j=k+1, ...,n; 1 =1, ..., Ky Denoting fi,(X;) =
k k
) ! . I
1grr11%r11\’1 ' ag ) Xy and g1, (X3) = 1%?%3\2 z b§-) Xx(j),» We can also
=1 J=k+1
assume that
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IB(X; € 4,X,; € B) — P(fr, (X1) > L9, (X2) > D <.

Since fi, € .7:4(“ and gx, € fin_“ for every k(k = 1,...,n-1 ), thus it
follows from (4.6) that

P(X; € A,.X; € B) — ¢ < P(fi,(Xy) > 1,9x,(X5) > 1)
< [P(fi(Xy) > DP(gs,(X3) > 1)
<[B(X, € 4) +¢][P(X; € B) +¢].

Letting £ — 0 we obtain
P(X; € 4,X; € B) < P(X; € A)P(X; € B),

that is, X is ND(Aik) , Ai"—k) ) for every k( k = 1,...,n-1) and hence
X is ND(A4{™ ).

To show the converse assume that X is ND(Agn) ), let fe Aik) and
ge A for every k( k = 1,...,n-1 ). Then for every a and b the set
A={X;: f(X3)>alisin A" and B = { X5 : g(X2) > b }isin
A Thus since X is ND(A™ ),

P(f(X,) > a,9(X,) > b) = P(X, € 4,X, € B)
< P(X, € A)P(X: € B)
= P(f(X;) > a)P(g(X;) > D)

N

that is, (4.6) holds.

THEOREM 4.4. For j = 1,...,5, if the random vector X is ND(Ag-n))
and nonnegative then X is FND(]:;")). If it is not assumed that X is
nonnegative then the above is true for j = 2,4,5.

Proof. X is ND(A;") ) then, by Lemma 4.3 for every pair of partitions
X1 =(Xa Koy )y Xo2 = (Xayyy s+ Xa, ) of X Cov(f(X,),9(X3)) <
0 whenever f€ f](k), ge ]:](-n—k), 1<k<n-l,and { a1,...,ar } C{
... n b { aky1, -y an } C{1,...n}, that is, X is F-ND(f](")). 1
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THEOREM 4.5. Forj=125ifX=(Xy,...,Xp)andY =(Y1, .., Ym
) are nonnegative independent random vectors which are ND(Ag-n) ) and
ND(.A;-m) ), respectively, then ( X, Y ) is ND(Af,-"+m) ). Without the
nonnegativity assumption, the above is true for j = 2,5.

Proof. The results is well known when j = 5 (NA) from Property P7 of
Joag - Dev and Proschan (1983). Let ( X;, X2 ) and ( Y1, Y, ) denote
arbitrary partitions of X and Y respectively. Put X; = ( Xgps- -,
Xa(k)), Xz = ( Xa(k_H),. “ey Xa(n)), ¥1 = ( Yﬂ(l),.. "Yﬂ(r) ) and Yz = (
Y8 i1y 1Y Bm) ). where a,  are arbitrary permutations of { 1,...,n
} and { 1,...,m }, respectively. By Lemma 4.3 it is sufficient to show
that for j = 1,2,

(4.11) Cov(h(f(X1,Y1)), ha(9(X;,Y,))) <0

whenever f¢ .7:](-k+r), g€ f;"+1n_k_r)
and h; and h, are increasing functions.

Denote by G the distribution function of y;, y2 and let f, g, h; and
hy be as in (4.8). Note that j = 1,2, and for every Y1, Yo, hy (f(-, y1))

and hy( g(- , y2 ) ) are increasing functions of functions in F. }r), F ng—r)
respectively, thus, by Leinma 4.3 '

E[hl(f()_(l,Y_'l))hz(g(xg’Yz))]
= A,,, E[hl(f(Xla )-’1))]12(9()_(2’)_’2)]61(;()_!)

< Lm E[hl(f(xl’XZ))’lz(g(XZszz)]dG(}_’)= (I) (Say)

Now t; (-) = E[ hy( f(X1,) ) ] and ¢y () = E[ hy( g(Xs,) )] ave also
increasing functions of functions in F, ](-k), F ](-n“k) respectively, thus, again
by Lemma 4.3,

(D= [ 6103,)92(3,)d60) = Elor(Yaa(¥a)

< E(1(Y1))E(¥2(Y,))
= Elhi(f(Xy, Y1) Elh2(9(X,5, Y3))]-
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So
Cov(hl(f(Xle))’ h?(g(-)_(m ¥2))) S 0,

Hence, by Lemma 4.3, ( X, Y ) is ND(.A;TH'M) )t

THEOREM 4.6. Forj = 1,...,5, if X = ( X4,..., X, ) is FND(F" )
then Y = ( f1(X1), f2(Xz), ..., fu(Xs) ) is FND(F{® ) whenever (X,

... , X ) is arbitrary partitions of X and f; € f}rj), provided r; is the
k
number of components of X; and Z r; = n
j=1
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