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CRITICAL POINTS OF REAL ENTIRE FUNCTIONS

SANG MOON KIM AND YOUNG ONE KIM

1. Introduction

This note is concerned with the zeros of a real entire function f( z)
and those of f' (z ). A real entire function is an entire function which
assumes only real values on .the real axis. Thus the zeros of a real entire
function f (z) are symmetrically located with respect to the real axis.
In order to state concisely the background to our results as well as the
results themselves, we introduce some terminologies.

Let f( z) be a nonconstant real entire function. Suppose that ~ is a
real zero of f(l)(z) of multiplicity m but not a zero of f(l-l)(Z). That is

Put

f(l-l)(Of(l+m)(~)> 0,

f(l-l)(Of(l+m)(~) < o.if m is odd and

if m is odd and

2

m
- if m is even,
2 '
m+l

2
m-I

k=

If k > 0 we shall say that ~ is a critical zero of f(l)( z) of the multiplicity
k. Let ]{(f(l») , 1 = 1,2,·,· , be the sum of the multiplicities of the
critical zeros of f(I)(z), and let ]{r(f) = 2:~1 ]((f(I»). (If f(z) is a
constant function, then we set ]((f(l») = 0, 1 = 1,2,···.) ]{(f(l») is
called the number of critical zeros of f(l)(z), and ]{r(f) is called the
total number of critical points of f( z). On the other hand, Zc(f) will
denote the number of nonreal zeros of f( z), counting multiplicities.

Received February 17, 1992.
Partially supported by Ministry of Education of the Republic of Korea and KOSEF.

133



134 Sang Moon Kim and Young One Kim

If j( z) is a real polynomial, it is easy to see that

(1)

(2)

and hence we have

(3)

Zc(J) - Zc(J') = 2/((J'),

Zc(J) = 2/(T(J).

The purpose of this note is to generalize (3) to a class of transcendental
functions.

A real entire function j(z) is said to be of genU3 1* if it can be
expressed in the form

z
j(z) = e-oz g(z),

where a ;::: 0 and g(z) is a real entire function of genus at most one. Thus,
if j(z) is of genus I*, then its genus may be 0 or 1 or 2, but in the last
case it is only slightly higher than genus 1. If j(z) is a real entire function
of genus 1* and if Zc(J) = 0, then it is called a Laguerre-P61ya function,
because a classical theorem of Laguerre and P61ya asserts that j(z) is a
Laguerre-P6lya function if and only if it can be uniformly approximated
on compact sets in the plane by a sequence of real polynomials with
only real zeros. (For a proof of this theorem see Levin [L, Chapter 8].)
The class of all Laguerre-P6lya functions will be denoted by £P, and
the class of all real entire functions of genus 1* which have finitely many
nonreal zeros will be denoted by £P*. From the above fact and RoUe's
theorem, it follows that if j E £P*, then

(4) Zc(J') ~ Zc(J).

Moreover, the classes .cp and £P* are closed under differentiation.
In 1930, P6lya [PI] showed that if j E .cP*, then (1) is true. In the

same paper, he also conjectured the following proposition which is called
the P61ya-Wiman conjecture.
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THE POLYA-WIMAN CONJECTURE. If f E LP*, tben (2) is true.

This conjecture has been proved by Craven, Csordas, Smith and Kim
[CCSl], [CCS2], [K]. Hence..(3) is true for f E LP*.

On the other hand, it i~ known that if a real entire function fez) is
not of genus 1*, then (1) and (2) are not true in general [HW1], [HW2] ,
[P2], [S]. Therefore, if we want to proceed further, we must look at the
functions of genus 1* which have infinitely many nonreal zeros. But,
as the function fez) = e Z + 1 shows, (3) is not true for some functions
of genus 1*. Note that fez) = eZ + 1 is of order 1 and its zero set is
{(2n + 1)7ri I n = 0, ±1, ±2,···}. Hence it is natural to consider the
functions of order less than 1 or the functions whose (nonreal) zeros are
sufficiently close to the real axis. In fact P6lya [PI] conjectured the
following:

POLYA'S CONJECTURE (1930). If fez) is a real entire function of
genus 0, then (3) is true.

It seems that this conjecture is open since 1930.
Instead of restricting the genus (or order), we will restrict the zero set

and obtain the following: Let pc(J) (resp. PK(f'» be the convergence
exponent of the nonreal zeros of fez) (resp. the critical zeros of f'(z»,
that is

pc(f) = lim lognc(r),
r-oo logr

(f') - -li lognK(r)PK - m ,
r-oo logr

where nc(r) (resp. nK(r» is the number of nonreal zeros of fez) (resp.
the critical zeros of f'(z» in Izl ::s: r. Then we have;

THEOREM 1. If fez) is of genus 1* and if fez) bas no zeros outside
an infinite strip Ilmzl ::s: A, A > 0, tben

(5) pc(f) = max.{pc(f'), PK(f')}.

THEOREM 2. If f( z) is of genus 1* and if f( z) bas no zeros outside
an infinite strip Ilm zl ::s: A, A> 0, tben (2) implies (3).
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REMARK. regarded as a generalization of (4).
(b) If pc(l) > 0, then Theorem 2 is an immediate consequence of

Theorem 1. However Theorem 2 includes the case that pc(l) = o.

2. Preliminaries

Let fez) be a nonconstant real entire function. Enumerate the real
zeros of f( z) as follows:

(-00 $ a $ k $ w $ +00, k finite ).

(In this sequence, a real zero of multiplicity m must appear exactly m
times.) According to Rolle's theorem, we can find a sequence {bk} of
real zeros of 1'(z) which satisfies

for all k < w.

Note that 1'(z) can have real zeros which do not appear in the sequence
{bk }. These zeros will be called the extra zeros of 1'(z), and the number
of extra zeros of 1'(z) will be denoted by E(I'). It is easy to see that

(6)

Now set

(7)

2]«J) $ E(I) $ 2]«(1) + 2.

(If fez) has no real zeros at all, set 'ljJ(z) == 1, and if it has only one real
zero ao, set 'ljJ( z) = (z - ao) -1.) It is well known that the product (7)
converges uniformly on any compact set not containing the poin~s ak [L,
p.308]. Moreover, we have the following:
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(r > 1, 0 < B< 7r).

LEMMA 1. The function w = 1jJ( z) maps the upper halfplane Im z > 0
into a half plane.

Proof. See [L p.308]. 0

This meromorphic function 1jJ( z) will be called the Levin function of
fez).

For each nonnegative real number A let (,pA be the class of real
entire functions of genus 1* which have no zeros outside the infinite
strip IImzl :::; A. It is known that f E (,pA if and only if fez) can be
uniformly approximated on compact sets in the plane by a sequence of
real polynomials all of whose zeros lie in the infinite strip IImzl :::; A [L,
Chapter 8]. In particular, the class (,pA is closed under differentiation.

Note that if f E (,pA, then fez) can be expressed in the form

2+ a IT z..z... IT Z Z (..!..+..1..)Zfez) = czne-az
fJZ (1 - -)e ak (1 - - )(1 _ -=-)e Cj Cj ,

ak c" c"k j))

where n is a nonnegative integer, a ~ 0, C, (3, and ak are real, IImcjl :::;
A, L lakl-2 < 00 and L ICjl-2 < 00. Therefore the logarithmic deriva­
tive of f( z) is given by

j'(z) = ~-2az+{3+" ( 1 +2-)+" (_1_ + _1_ + 2ReCj),
fez) z 7 z - ak ak 7 z - Cj Z - Cj ICjl2

and hence we have

LEMMA 2. If f E (,pA, then the function w = j'(z)/f(z) maps the
half plane Im z > A into the lower half plane Im w < O.

In the proof our theorems we will use the following lemmas.

LEMMA 3 (CARATHEODORY INEQUALITY). Let w = fez) be an an­
alytic function defined on the upper half plane Im z > o. If w = f( z)
maps the upper half plane Im z > 0 into the upper half plane Im w > 0,
then

1 . sinB "8 . r
-5 If(z)l- < If(re Z

)\ < 5If(z)I-:---n,
r Slnu

Proof. See [L, p.18]. 0
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LEMMA 4. Let f E J::pA and let p be the convergence exponent of
the zeros of f(z). If the genus of f(z) is less than 2, then

lim log log If(ir)1 = p.
r .....oo logr

Proof. The order of the even function g(z) = f(z)f( -z) is exactly
p. Let h(z) = g(JZ). Then h(z) is a real entire function of order p/2
and the zeros of h(z) lie in the region {x + iy I x 2:: y2/(2A)2 - A2}.
Therefore

-U log log (maxlzl=r2Ih(z)1)
p= m

r .....oo logr

= Um log log h(_r
2

)

r .....oo log r

= Um log log g(ir)
r .....oo log r

= lim logloglf(ir)1 0
r-oo logr

3. Proof of the Theorems

Proof of 'J'heorem 1. Let f E £pA, and let II(z) and III(z) be the
canonical products of the nonreal zeros of f(z) and f'(z), respectively.
The logarithmic derivative of f( z) can be expressed in the form

(8) f'(z) = III(z).,.( )-I..( )
f(z) II(z) 'P Z 'P Z ,

where t/J(z) is the Levin function of f( z) and 4>( z) is a real entire function.
It is clear that TI(z), III(z) and 4>(z) are of genus at most 1, and the zeros
of 4>( z) are exactly the extra zeros of f' (z ).

From Lemmas 1, 2 and 3, there are positive constants Cl and C2 such
that
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for all sufficiently large r, and hence (8) gives

C1r-2 Ill(ir)1 < Ill 1(ir)<jJ(i7»1 < C2 r 2 Ill(ir)l·

139

(9)

Now Lemma 4 gives

(f) -1' log log Ill(ir)1
Pc = 1m

r-oo logr

= Em log log III 1(ir )<jJ(ir) I
r-oo logr

= max{pc(f'), PE(f')} ,

where PE(f') is the convergence exponent of the extra zeros of f' (z). It
is clear that PE(f') = PK(f'), and (9) gives the desired result. 0

Proof of Theorem 2. Let j E £pA and assume that limn -+ oo Zc(f(n») =
O. Since (1) is true for all f E £P*, we may assume, without loss of gen­
erality, that Zc(f) = 00. Then there must be an integer 1 such that
Zc(f(l») = 00 and Zc(f(/+!») < 00. It suffices to show that j(l+l)(z)
has infinitely many critical zeros.

To get a contradiction, assume that j(/+l)( z) has only a finite number
of critical zeros. From (6) j(/+l)(Z) has only a finite number of extra
zeros and hence we have

(10)
f(/+l)(Z)

j(l)(z)
e'YZP(z)'IjJ(z)

ll(z)

where, is a real constant, P( z) is a real polynomial, 'IjJ( z) is the Levin
function of f(/)( z) and ll( z) is the canonical product ofthe nonreal zeros
of j(/)(z).

From Lemmas 1, 2 and 3, there is a positive constant C such that

I
j(l+l)(z) 1 I

Cr-
2

< f(l)(z) 'IjJ(z)

for all sufficiently large r. Now (10) gives

Ill(ir)1 < C- 1r2 IP(ir)l,

which is impossible since ll( z) is an infinite product all of whose zeros
lie in the infinite strip IImzl ~ A. This contradiction shows that j(l)(z)
must have infinitely many critical zeros. 0
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