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NUMERICAL RESULTS ON THE EIGENVALUE

DISTRIBUTION OF THE MATRIX Sh1Ch

SANG DONG KIM

1. Introduction

Let I = [0,1] be the unit interval in R. Consider the simple differential
equation of the form

Lu = _utI

(1.1) u(O) = 0, u'(1) = o.

We know that in the conforming finite element discretization of

(1.2) Lu =f,

we have the linear system ShUh =Fh where Sh is called as the stiffness
matrix associated with a particular choice of basis for the finite element
space S.

Let {/i : i = 1,··, ,kn} be a given basis for S. Following [2], we
partition [0, 1] into uniform subintervals Ij = [Xj_I,Xj] for j = 1,,·, ,n
such that 0 = Xo < Xl < ... < X n = l.

Now consider

(1.3) -u"(X) =0, u(O) = u'(l) = o.

The collocation version of (1.3) is that for any Uh = adl + ... +aknfkn
in S

(1.4) " "adl (tj) + ... + aknfkn(tj) = O.
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where k is the number of quadrature points on Ij and t j is the quadrature
point of the Chebyshev-Gauss type quadrature.

We define Ajr = fr(tj), B jr = - f; (tj), and Wjr = diag(wj) where
W j is the weight corresponding to t j. The matrix form of (1.4) is
Bha = 0, where a is the coefficient vector of Uh. This can be written as
AiWhBha = o. We call Ch = AiWhBh as the collocation matrix.

In this paper, we investigate the eigenvalue distibution of S;;lCh (0 <
h < 1). The numerical results show that the eigenvalues of the S;;lCh

are nearly bounded when the Chebyshev-Gauss type quadrature nodes
and weights are used.

2. Quadratures

Let ( , ) be the L2 inner product defined on S. Then we can formulate
(1.2) as follows:

Find U h in S such that

(2.1) for all Vh in S.

Applying integration by parts to (1.3), we have (u~, v~) = 0 which makes
us define the so-called stiffness matrix

(2.2)

Note that the above stiffness matrix (2.2) is a positive definite matrix.
See [3].

In [1] there are explicit formulas for the quadrature points and weights:
For the Chebyshev-Gauss quadrature, the quadrature points and weights
are given respectively by

(2.3)

(2j + 1)11"
x j = cos 2n + 2 '

11"
Wj = n + l' j = 0,··· ,n.

For the Chebyshev-Gauss-Radau quadrature, the quadrature points and
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weights are given respectively by

125

(2.4)

27rj
X· =cos---

} 2n + l'

{

7r . 0
2n + l' J = ,

Wj = 2
2n : 2' j = 1, . " , n.

For the Chebyshev-Gauss-Lobotta quadrature, the quadrature points
and weights are given respectively by

(2.5)

27rj
Xj = cos --,

n

{

7r . 0
2n' J = , n,

Wj =
~, j = 1, .. · , n-1.
n

3. Numerical results

For the computation, we use the cubic spline basis functions s and v
on 5[-1,1] such that

(3.1)
s( -1) = s(O) = s(l) = 0, s'(-1) = s'(l) = 0, s'(O) = 1.

(3.2)
v(O) = 1, v( -1) = v(l) = 0, v'( -1) = v'(O) = v'(l) = O.

We transform s and v linearly on each interval Ij so that we have 2n
basis functions on I. Therefore each matrix mentioned is a 2n-by-2n
matrix. Also we construct the collocation matrix with respect to this
basis and the quadrature points and corresponding weights on I j by
linear transformation. See [4}. The following are computational results
when h = .1, .05, .025, .0125 using MATLAB (1990 version ).

Case 1. Using Chebyshev-Gauss quadrature (2.3)



126 Sang Dong Kim

Result 3.1 : The eigenvalues of Si:1Ch are bounded. See fig
ure 1. Both upper and lower bounds are positive.
Moreover, the lower bound is bigger than 2. The
collocation matrix Ch can also be shown numerically
to have positive eigenvalues.

Case 2. Using Chebyshev-Gauss-Radau quadrature (2.4)
Result 3.2 : The eigenvalues of S;;lCh are bounded. See figure

2.

Case 3. Using Chebyshev-Gauss-Lobotta quadrature (2.5)
Result 3.3 : The lower bounds of eigenvalues of Si:1Ch is 0

so that Ch has 0 eigenvalues. The multiplicity of
eigenvalue 0 is half of the dimension of Ch. The
upper bound of eigenvalues of S;;lCh is less than 8.
See figure 3.

Eigenvalue distribution of Si: 1Ch
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Fig 1. h= .1, .05, .025, .0125 in case 1.



Numerical results on the eigenvalue distribution 127

• • ...........
• • ........... ..........~

............ • • • • • • • • • • ~ .....-

..... • • • • • • • • • • ••

0 1 2 3 4 5 6 7

Fig 2. h= .1, .05, .025, .0125 in case 2.
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Fig 3. h= .1, .05, .025, .0125 in case 3.

4. Comments

The results can be shown numerically to hold for any mesh size h.
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