Comm. Korean Math. Soc. 7(1992), No. 1, pp. 123-128

NUMERICAL RESULTS ON THE EIGENVALUE DISTRIBUTION OF THE MATRIX $S_h^{-1}C_h$

SANG DONG KIM

1. Introduction

Let I = [0, 1] be the unit interval in R. Consider the simple differential equation of the form

(1.1)
$$Lu = -u'' u(0) = 0, \quad u'(1) = 0.$$

We know that in the conforming finite element discretization of

(1.2)
$$Lu = f, \quad f \text{ in } L^2(I),$$

we have the linear system $S_h U_h = F_h$ where S_h is called as the stiffness matrix associated with a particular choice of basis for the finite element space \hat{S} .

Let $\{f_i : i = 1, \dots, kn\}$ be a given basis for \hat{S} . Following [2], we partition [0, 1] into uniform subintervals $I_j = [x_{j-1}, x_j]$ for $j = 1, \dots, n$ such that $0 = x_0 < x_1 < \dots < x_n = 1$.

Now consider

(1.3)
$$-u''(x) = 0, \quad u(0) = u'(1) = 0.$$

The collocation version of (1.3) is that for any $u_h = a_1 f_1 + \cdots + a_{kn} f_{kn}$ in \hat{S}

(1.4)
$$a_1 f_1''(t_j) + \cdots + a_{kn} f_{kn}''(t_j) = 0.$$

Received February 2, 1992.

where k is the number of quadrature points on I_j and t_j is the quadrature point of the Chebyshev-Gauss type quadrature.

We define $A_{jr} = f_r(t_j)$, $B_{jr} = -f''_r(t_j)$, and $W_{jr} = \text{diag}(w_j)$ where w_j is the weight corresponding to t_j . The matrix form of (1.4) is $B_h a = 0$, where a is the coefficient vector of u_h . This can be written as $A_h^t W_h B_h a = 0$. We call $C_h = A_h^t W_h B_h$ as the collocation matrix.

In this paper, we investigate the eigenvalue distibution of $S_h^{-1}C_h$ (0 < h < 1). The numerical results show that the eigenvalues of the $S_h^{-1}C_h$ are nearly bounded when the Chebyshev-Gauss type quadrature nodes and weights are used.

2. Quadratures

Let (,) be the L^2 inner product defined on \hat{S} . Then we can formulate (1.2) as follows:

Find u_h in \hat{S} such that

(2.1)
$$(u'_h, v'_h) = (f, v_h) \quad \text{for all } v_h \text{ in } S.$$

Applying integration by parts to (1.3), we have $(u'_h, v'_h) = 0$ which makes us define the so-called stiffness matrix

(2.2)
$$S_h(i,j) = (f'_i, f'_j).$$

Note that the above stiffness matrix (2.2) is a positive definite matrix. See [3].

In [1] there are explicit formulas for the quadrature points and weights: For the Chebyshev–Gauss quadrature, the quadrature points and weights are given respectively by

(2.3)
$$x_{j} = \cos \frac{(2j+1)\pi}{2n+2}, \\ w_{j} = \frac{\pi}{n+1}, \qquad j = 0, \cdots, n.$$

For the Chebyshev-Gauss-Radau quadrature, the quadrature points and

124

weights are given respectively by

(2.4)
$$x_{j} = \cos \frac{2\pi j}{2n+1},$$
$$w_{j} = \begin{cases} \frac{\pi}{2n+1}, j = 0, \\ \frac{2\pi}{2n+2}, j = 1, \cdots, n. \end{cases}$$

For the Chebyshev-Gauss-Lobotta quadrature, the quadrature points and weights are given respectively by

(2.5)
$$x_{j} = \cos \frac{2\pi j}{n},$$
$$w_{j} = \begin{cases} \frac{\pi}{2n}, \ j = 0, \ n, \\ \frac{\pi}{n}, \ j = 1, \cdots, n-1. \end{cases}$$

3. Numerical results

For the computation, we use the cubic spline basis functions s and v on $\hat{S}[-1,1]$ such that

(3.1)

$$s(-1) = s(0) = s(1) = 0, \ s'(-1) = s'(1) = 0, \ s'(0) = 1.$$

(3.2)
 $v(0) = 1, \ v(-1) = v(1) = 0, \ v'(-1) = v'(0) = v'(1) = 0.$

We transform s and v linearly on each interval I_j so that we have 2n basis functions on I. Therefore each matrix mentioned is a 2n-by-2n matrix. Also we construct the collocation matrix with respect to this basis and the quadrature points and corresponding weights on I_j by linear transformation. See [4]. The following are computational results when h = .1, .05, .025, .0125 using MATLAB (1990 version).

Case 1. Using Chebyshev–Gauss quadrature (2.3)

Sang Dong Kim

- Result 3.1 : The eigenvalues of $S_h^{-1}C_h$ are bounded. See figure 1. Both upper and lower bounds are positive. Moreover, the lower bound is bigger than 2. The collocation matrix C_h can also be shown numerically to have positive eigenvalues.
- Case 2. Using Chebyshev-Gauss-Radau quadrature (2.4) Result 3.2 : The eigenvalues of $S_h^{-1}C_h$ are bounded. See figure 2.
- Case 3. Using Chebyshev-Gauss-Lobotta quadrature (2.5) Result 3.3 : The lower bounds of eigenvalues of $S_h^{-1}C_h$ is 0 so that C_h has 0 eigenvalues. The multiplicity of eigenvalue 0 is half of the dimension of C_h . The upper bound of eigenvalues of $S_h^{-1}C_h$ is less than 8. See figure 3.

Eigenvalue distribution of $S_h^{-1}C_h$

Fig 1. h = .1, .05, .025, .0125 in case 1.

4. Comments

The results can be shown numerically to hold for any mesh size h.

References

1. Canuto, C. and Hussaini, M. Y., Quarteroni, A., Zang, T. A., Spectral methods in fluid dynamics, Springer-Verlag, 1989.

127

Sang Dong Kim

- 2. Cerutti, J. and Parter, S., Collocation methods for parabolic partial differential equations in one space dimension, Numer. Math. 26 (1976), 227-254.
- 3. Johnson, C., Numerical solutions of partial differential equations by the finite element method, Cambridge University press, 1987.
- 4. Johnson, L. and Dean Riess, R., Numerical Analysis, 2nd ed., Addision Wesley, 1982.

University of Wisconsin Madison, WI 53706 U. S. A.

•

128