OPTIMALITY AND DUALITY FOR MULTIOBJECTIVE ρ -INVEX PROGRAMS

Do Sang Kim and Gue Myung Lee

1. Introduction

M. A. Hanson [3] defined the invex function which is a generalization of the convex function, proved that the Kuhn-Tucker conditions are sufficient for a global minima of the scalar optimization problem concerning with invex functions and established Wolfe duality theorems [12] for this problem. On the other hand, J. P. Vial [10] defined the ρ -convex function and considered various properties of this function. Subsequently R. R. Egudo [2] showed that Wolfe type duality theorems and Mond-Weir type duality theorems hold for the multiobjective optimization problem which consist of ρ -convex functions. V. Jeyakumar [4] introduced the ρ -invex function which is an extension of the invex function and the ρ -convex function, investigated the sufficiency of the Kuhn-Tucker conditions for scalar nonlinear optimization programs which are composed of ρ -invex functions, and considered Wolfe duality theorems for these programs. Recently, D. S. Kim and G. M. Lee [6] proved sufficiency of the Kuhn-Tucker conditions and duality theorems for multiobjective invex programming.

In this paper, we prove that the Kuhn-Tucker conditions are sufficient for an efficient solution of the multiobjective optimization problem which consists of ρ -invex functions, and establish Wolfe type duality theorems and Mond-Weir type duality theorems for this problem.

Throughout this paper, we use the following conventions:

Let R^k be a k-dimensional Euclidean space, $x = (x_1, \dots, x_k)^t \in R^k$, $y = (y_1, \dots, y_k)^t \in R^k$ and $R_+^k = \{z = (z_1, \dots, z_k)^t \in R^k : z_i \geq 0\}$. 1. x < y if and only if $x_i < y_i$, $i = 1, \dots, k$.

Received December 2, 1991. Revised January 21, 1992.

This research was partially supported by the Dong-Won Research Foundation.

- 2. $x \leq y$ if and only if $x_i \leq y_i$, $i = 1, \dots, k$.
- 3. $x \le y$ if and only if $x_i \le y_i$, $i = 1, \dots, k$, but $x \ne y$.
- 4. $x \not\leq y$ is the negation of $x \leq y$.

DEFINITION 1.1. A differentiable function $h: R^n \to R$ is ρ -invex with respect to functions $\eta, \theta: R^n \times R^n \to R^n$ if and only if there exists some real number ρ such that for each $x, u \in R^n$,

$$h(x) - h(u) \ge \nabla h(u)\eta(x, u) + \rho \|\theta(x, u)\|^2,$$

where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n .

We consider the multiobjective program:

(P) Minimize
$$f(x)$$

subject to $x \in X = \{x \in \mathbb{R}^n : g(x) \le 0\}$

where $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are differentiable functions.

In relation to (P), we consider the following two multiobjective maximization problems.

The Wolfe vector dual of (P) [12]:

(WVD) Maximize $f(x)+y^tg(x)e$ subject to $(x,\lambda,y) \in Y_W$, where $Y_W = \{(x,\lambda,y) : \nabla \lambda^t f(x) + \nabla y^t g(x) = 0, y \geq 0, \lambda \in \Lambda^+\}, e = (1,\dots,1)^t \in \mathbb{R}^p$ and $\Lambda^+ = \{\lambda > 0, \lambda^t e = 1\}.$

The Mond-Weir vector dual of (P) [9]:

(MWVD) Maximize f(x) subject to $(x, \lambda, y) \in Y_M$, where $Y_M = \{(x, \lambda, y) : \nabla \lambda^t f(x) + \nabla y^t g(x) = 0, \lambda \in \Lambda^+, y \geq 0, y^t g(x) \geq 0\}.$

In this, optimization in (P), (WVD) and (MWVD) means obtaining efficient solutions for the corresponding programs. Recently, T. Weir [11] considered the above two dual problems of (P) by using the concept of the proper efficiency.

DEFINITION 1.2. (a). A point $\overline{x} \in X$ is an efficient solution for (P) if and only if for any $x \in X$, $f(x) \not \leq f(\overline{x})$.

- (b). A point $(\overline{x}, \overline{\lambda}, \overline{y}) \in Y_W$ is an efficient solution for (WVD) if and only if for any $(x, \lambda, y) \in Y_W$, $f(\overline{x}) + \overline{y}^t g(\overline{x}) e \not\leq f(x) + y^t g(x) e$.
- (c). A point $(\overline{x}, \overline{\lambda}, \overline{y}) \in Y_M$ is an efficient solution for (MWVD) if and only if for any $(x, \lambda, y) \in Y_M$, $f(\overline{x}) \not\leq f(x)$.

2. Optimality Conditions

Now, we consider optimality conditions for an efficient solutions for (P).

THEOREM 2.1. Suppose that f_i , $i=1,\cdots,p$ are ρ_i -invex with respect to η and θ and g_j , $j=1,\cdots,m$ are σ_j -invex with respect to η and θ . If there exist $\overline{\lambda}>0$, $\overline{\lambda}\in R^p$ and $\overline{y}\in R^m_+$ such that $\nabla\overline{\lambda}^t f(\overline{x})+\nabla\overline{y}^t g(\overline{x})=0$, $\overline{y}^t g(\overline{x})=0$ and $g(\overline{x})\leq 0$, and if, furthermore, $\sum_{i=1}^p \overline{\lambda}_i \rho_i + \sum_{j=1}^m \overline{y}_j \sigma_j \geq 0$, then \overline{x} is an efficient solution of (P).

Proof. Suppose that \overline{x} is not an efficient solution for (P). Then, there exists an $x \in X$ such that $f(x) \leq f(\overline{x})$. Since $\overline{\lambda} > 0$, we have $\overline{\lambda}^t f(x) < \overline{\lambda}^t f(\overline{x})$. By the $\sum_{i=1}^p \overline{\lambda}_i \rho_i$ -invexity of $\overline{\lambda}^t f(\cdot)$,

(1)
$$\nabla \overline{\lambda}^t f(\overline{x}) \eta(x, \overline{x}) + \sum_{i=1}^p \overline{\lambda}_i \rho_i \|\theta(x, \overline{x})\|^2 < 0.$$

Since $\overline{y}^t g(\overline{x}) = 0$ and $\overline{y}^t g(x) \leq 0$, we have $\overline{y}^t g(x) - \overline{y}^t g(\overline{x}) \leq 0$. By the $\sum_{j=1}^m \overline{y}_j \sigma_j$ -invexity of $\overline{y}^t g(\cdot)$,

(2)
$$\nabla \overline{y}^t g(\overline{x}) \eta(x, \overline{x}) + \sum_{j=1}^m \overline{y}_j \sigma_j \|\theta(x, \overline{x})\|^2 \le 0.$$

From (1) and (2),

$$[\nabla \overline{\lambda}^t f(\overline{x}) + \nabla \overline{y}^t g(\overline{x})] \eta(x, \overline{x}) + (\sum_{i=1}^p \overline{\lambda}_i \rho_i + \sum_{j=1}^m \overline{y}_j \sigma_j) \|\theta(x, \overline{x})\|^2 < 0.$$

By the assumption $(\sum_{i=1}^{p} \overline{\lambda}_{i} \rho_{i} + \sum_{j=1}^{m} \overline{y}_{j} \sigma_{j}) \geq 0$, we have

$$[\nabla \overline{\lambda}^t f(\overline{x}) + \nabla \overline{y}^t g(\overline{x})] \eta(x, \overline{x}) < 0.$$

This contradicts our hypothesis.

LEMMA 2.1 ([1],[5]). $\overline{x} \in X$ is an efficient solution for (P) if and only if \overline{x} is a solution for (P_k) , where (P_k) is the following problem. Minimize $f_k(x)$ subject to $f_j(x) \leq f_j(\overline{x})$ for all $j \neq k, g(x) \leq 0$, for each $k = 1, \dots, p$.

From Lemma 2.1, we can prove the following theorem by the method similar to the proof in Theorem 3.4 of [5].

THEOREM 2.2. If $\overline{x} \in X$ is an efficient solution for (P) and if we assume that \overline{x} satisfies a constraint qualification ([7], [8]) for (P_k) , $k = 1, \dots, p$, then there exist $\overline{\lambda} \in \Lambda^+$ and $\overline{y} \in R^m_+$ such that $\nabla \overline{\lambda}^t f(\overline{x}) + \nabla \overline{y}^t g(\overline{x}) = 0$ and $\overline{y}^t g(\overline{x}) = 0$.

3. Duality Theorems

Now, we establish duality theorems for (P) and (WVD).

THEOREM 3.1. Suppose that f_i , $i=1,\dots,p$ are ρ_i -invex with respect to η and θ , and g_j , $j=1,\dots,m$, are σ_j -invex with respect to η and θ . Assume that $\sum_{i=1}^p \lambda_i \rho_i + \sum_{j=1}^m y_j \sigma_j \geq 0$ for all $(u,\lambda,y) \in Y_W$. Then, for all $x \in X$ and for all $(u,\lambda,y) \in Y_W$, $f(x) \not\leq f(u) + y^t g(u) e$.

Proof. Suppose that there exist $\overline{x} \in X$ and $(\overline{u}, \overline{\lambda}, \overline{y}) \in Y_W$ such that $f(\overline{x}) \leq f(\overline{u}) + \overline{y}^t g(\overline{u})e$. Since $\overline{\lambda} \in \Lambda^+$ and $\overline{y}^t g(\overline{x}) \leq 0$, we have

$$\overline{\lambda}^t f(\overline{x}) - \overline{\lambda}^t f(\overline{u}) + \overline{y}^t g(\overline{x}) - \overline{y}^t g(\overline{u}) < 0.$$

By the $\sum_{i=1}^p \overline{\lambda}_i \rho_i$ -invexity of $\overline{\lambda}^t f(\cdot)$ and the $\sum_{j=1}^m \overline{y}_j \sigma_j$ -invexity of $\overline{y}^t g(\cdot)$, we have

$$\nabla \overline{\lambda}^t f(\overline{u}) \eta(\overline{x}, \overline{u}) + \sum_{i=1}^p \overline{\lambda}_i \rho_i \|\theta(\overline{x}, \overline{u})\|^2 + \nabla \overline{y}^t g(\overline{u}) \eta(\overline{x}, \overline{u}) + \sum_{j=1}^m \overline{y}_j \sigma_j \|\theta(\overline{x}, \overline{u})\|^2$$

$$= [\nabla \overline{\lambda}^t f(\overline{u}) + \nabla \overline{y}^t g(\overline{u})] \eta(\overline{x}, \overline{u}) + (\sum_{i=1}^p \overline{\lambda}_i \rho_i + \sum_{j=1}^m \overline{y}_j \sigma_j) \|\theta(\overline{x}, \overline{u})\|^2 < 0.$$

Since $\sum_{i=1}^{p} \overline{\lambda}_{i} \rho_{i} + \sum_{j=1}^{m} \overline{y}_{j} \sigma_{j} \geq 0$, $[\nabla \overline{\lambda}^{t} f(\overline{u}) + \nabla \overline{y}^{t} g(\overline{u})] \eta(\overline{x}, \overline{u}) < 0$. This is a contradiction.

THEOREM 3.2. Suppose that f_i , $i=1,\cdots,p$ are ρ_i -invex with respect to η and θ and g_j , $j=1,\cdots,m$ are σ_j -invex with respect to η and θ . Assume that $\sum_{i=1}^p \lambda_i \rho_i + \sum_{j=1}^m y_j \sigma_j \geq 0$ for all $(u,\lambda,y) \in Y_W$. Let \overline{x} is an efficient solution for (P) and assume that \overline{x} satisfies a constraint qualification ([7], [8]) for (P_k) , $k=1,\cdots,p$. Then there exist $\overline{\lambda} \in R^p$ and $\overline{y} \in R^m$ such that $(\overline{x}, \overline{\lambda}, \overline{y})$ is an efficient solution for (WVD).

Proof. By Theorem 2.2, there exist $\overline{\lambda} \in \Lambda^+$ and $\overline{y} \in R_+^m$ such that $(\overline{x}, \overline{\lambda}, \overline{y}) \in Y_W$ and $\overline{y}^t g(\overline{x}) = 0$. By Theorem 3.1, for all $(x, \lambda, y) \in Y_W$, $f(\overline{x}) \not\leq f(x) + y^t g(x)e$. Since $\overline{y}^t g(\overline{x}) = 0$, $f(\overline{x}) + \overline{y}^t g(\overline{x})e \not\leq f(x) + y^t g(x)e$. Hence $(\overline{x}, \overline{\lambda}, \overline{y})$ is an efficient solution for (WVD).

Now, we establish duality theorems for (P) and (MWVD).

THEOREM 3.3. Suppose that f_i , $i=1,\cdots,p$ are ρ_i -invex with respect to η and θ and g_j , $j=1,\cdots,m$ are σ_j -invex with respect to η and θ . Assume that $\sum_{i=1}^p \lambda_i \rho_i + \sum_{j=1}^m y_j \sigma_j \geq 0$ for all $(u,\lambda,y) \in Y_M$. Then, for all $x \in X$ and for all $(u,\lambda,y) \in Y_M$, $f(x) \not\leq f(u)$.

Proof. By the method similar to the proof of Theorem 3.1, we can obtain above result.

THEOREM 3.4. Suppose that f_i , $i=1,\dots,p$ are ρ_i -invex with respect to η and θ and g_j , $j=1,\dots,m$ are σ_j -invex with respect to η and θ . Assume that $\sum_{i=1}^p \lambda_i \rho_i + \sum_{j=1}^m y_j \sigma_j \geq 0$ for all $(u,\lambda,y) \in Y_M$. Let \overline{x} is an efficient solution for (P) and assume that \overline{x} satisfies a constraint qualification ([7], [8]) for (P_k) , $k=1,\dots,p$. Then there exist $\overline{\lambda} \in R^p$ and $\overline{y} \in R^m$ such that $(\overline{x}, \overline{\lambda}, \overline{y})$ is an efficient solution for (MWVD).

Proof. By Theorem 2.2, there exist $\overline{\lambda} \in \Lambda^+$ and $\overline{y} \in R_+^m$ such that $(\overline{x}, \overline{\lambda}, \overline{y}) \in Y_M$. By Theorem 3.3, for all $(u, \lambda, y) \in Y_M$, $f(\overline{x}) \not \leq f(u)$. Hence $(\overline{x}, \overline{\lambda}, \overline{y})$ is an efficient solution for (MWVD).

References

- 1. V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, North-Holland, New York, 1983.
- 2. R. R. Egudo, Efficiency and generalized convex duality for multiobjective programs, Journal of Mathematical Analysis and Applications 138 (1983), 84-94.

- 3. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications 80 (1981), 545-550.
- 4. V. Jeyakumar, Strong and weak invexity in mathematical programming, Methods of Operation Research 55 (1985), 109-125.
- 5. P. Kanniappan, Necessary conditions for optimality of nondifferentiable convex multiobjective programming, Journal of Optimization Theory and Applications 40 (1983), 167-174.
- D. S. Kim and G. M. Lee, Optimality conditions and duality theorems multiobjective invex programs, Journal of Informations & Optimization Sciences 12 (1991), 235-242.
- H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceedings, Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, CA, 1950, pp. 481-492.
- 8. O. L. Mangasarian, Nonlinear Programming, Mc Graw-Hill, New York, 1969.
- 9. B. Mond and T. Weir, Generalized concavity and duality, Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba Eds.), Academic Press, San Diego, 1981, pp. 263-279.
- J. P. Vial, Strong and weak convexity of sets and functions, Mathematics of Operations Research 8 (1983), 231-259.
- 11. T. Weir, Proper efficiency and duality for vector valued optimization problems, Journal of the Australian Mathematical Society (Series A) 43 (1987), 21-34.
- 12. P. Wolfe, A duality theorem for nonlinear programming, Quartly of Applied Mathematics 19 (1961), 239-244.

Department of Applied Mathematics National Fisheries University of Pusan Pusan 608-737, Korea and Department of Natural Sciences Pusan National University of Technology Pusan 608-739, Korea