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OPTIMALITY AND DUALITY FOR

MULTIOBJECTIVE p-INVEX PROGRAMS

Do SANG KIM AND GUE MYUNG LEE

1. Introduction

M. A. Hanson [3] defined the invex function which is a generalization
of the convex function, proved that the Kuhn-Thcker conditions are suf­
ficient for a global minima of the scalar optimization problem concerning
with invex functions and established Wolfe duality theorems [12] for this
problem. On the other hand, J. P. Vial [10] defined the p-convex func­
tion and considered various properties of this function. Subsequently R.
R. Egudo [2] showed that Wolfe type duality theorems and Mond-Weir
type duality theorems hold for the multiobjective optimization problem
which consist of p-convex functions. V. Jeyakumar [4] introduced the
p-invex function whicll is an extension of the invex function and the
p-convex function, investigated the sufficiency of the Kuhn-Tucker con­
ditions for scalar nonlinear optimization programs which are composed
of p-invex functions, and considered Wolfe duality theorems for these
programs. Recently, D. S. Kim and G. M. Lee [6] proved sufficiency
of the Kuhn-Thcker conditions and duality theorems for multiobjective. .lllvex programmmg.

In this paper, we prove that the Kuhn-Tucker conditions are sufficient
for an efficient solution of the multiobjective optimization problem which
consists of p-invex functions, and establish Wolfe type duality theorems
and Mond-Weir type duality theorems for this problem.

Throughout this paper, we use the following conventions :
Let R k be a k-dimensional Euc1idean space, x = (x},.·· ,Xk)t E

R k
, Y = (Yl,··· ,Yk)t E Rk and Ri = {z = (ZI, •• • ,Zk)t E Rk

: Zi 2:: O}.
1. x < Y if and only if Xi < Yi, i = 1" .. ,k.
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(P)

2. X :5 y if and only if Xi :5 Yi, i = 1, ,k.
3. X :5 y if and. only if Xi :5 Yi, i = 1, , k, but X:f: y.
4. X 1:. y is the negation of X :5 y.

DEFINITION 1.1. A differentiable function h : Rn -+ R is p-invex
with respect to functions T/,8 : Rn X Rn -+ Rn if and only if there exists
some real number p such that for each x, u E Rn,

hex) - h(u) ~ Vh(u)T/(x,u) + pII8(x,u)1I 2
,

where 11 . 11 is the Euclidean norm on Rn.
We consider the multiobjective program :

Minimize I (x)
subject to x E X = {x E Rn : g(x) :5 o}

where I : Rn -+ RP and 9 : Rn -+ Rm are differentiable functions.

In relation to (P), we consider the following two multiobjective max­
imization problems.

The Wolfe vector dual of (P) [12] :
(WVD) Maximize f(x)+ytg(x)e subject to (X,A,y) E Yw, where

Yw = ((X,A,y): VAtl(x)+Vytg(x) = O,y ~ O,A E A+},e = (1"" ,1)t
E RP and A+ = {A > O,Ate = I}.

The Mond-Weir vector dual of (P) [9] :
(MWVD) Maximize I(x) subject to (X,A,y) E YM , where

YM = {(x, A, y) : VAtI(x) + vytg(x) = 0, AE A+, Y ~ 0, ytg(x) 2:: O}.
In this, optimization in (P), (WVD) and (MWVD) means obtaining

efficient solutions for the corresponding programs. Recently, T. Weir [11]
considered the above two dual problems of (P) by using the concept of

. the proper efficiency.

DEFINITION 1.2. (a). A point x E X is an efficient solution for (P)
if and only if for any x EX, f(x) 1:. f(x).
(b). A point (x, X, y) E Yw is an efficient solution for (WVD) if and only
if for any (x, A, y) E Yw , lex) + Ilg(x)e 1:. I(x) + ytg(x)e.
(c). A point (x, X, y) E YM is an efficient solution for (MWVD) if and
only if for any (X,A,y) E YM , I(x) 1:. I(x).
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2. Optimality Conditions

Now, we consider optimality conditions for an efficient solutions for
(P).

THEOREM 2.1. Suppose that h, i = 1"" ,p are Pi-invex with re­
spect to TJ and 0 and gj, j = 1,,·, ,m are (Jj-invex with respect to TJ

- - -t
and O. If there exist A > 0, A E RP and y E R+ such that VA f(x) +
vytg(x) = 0, ytg(x) = 0 and g(x) ::; 0, and if, furthermore, Ef=l -XiPi+
2::}:1 Yj(J j ~ 0, then x is an efficient solution of (P).

Proof Suppose that x is not an efficient solution for (P). Then, there
- -t

exists an x E X such that f(x) ::; f(x). Since A > 0, we have A j(x) <
-xt

f(x). By the Ef=l -XiPi-invexity of -X
t
f('),

(1)
p

V-Xtj(x)TJ(x, x) + L"XiPiIlO(x, x)1I 2 < O.
i=l

Since ytg(x) = 0 and ytg(x) ::; 0, we have ytg(x) - ytg(x) ::; O. By the
2::}:1 Yj(Jj-invexity of ytg(')'

(2)
m

vytg(x)TJ(x, x) + LYj(JjIIO(x, x)11 2
::; O.

j=l

From (1) and (2),

P m

[V"Xtf(x) + vytg(x)]TJ(x,x) + (L"XiPi + LYj(Jj)1I0(x,x)1I2 < O.
i=1 j=1

This contradicts our hypothesis.
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LEMMA 2.1 ([1],[5]). X E X is an efficient solution for (P) if and
only if x is a solution for (Pk), where (Pk ) is the following problem.
Minimize fk(X) subject to h(x):5 hex) for all j =1= k,g(x) :5 0, for
each k = 1"" ,po

From Lemma 2.1, we can prove the following theorem by the method
similar to the proof in Theorem 3.4 of [5].

THEOREM 2.2. If X E X is an efficient solution for (P) and if we
assume that x satisfies a constraint qualification ([7], [8]) for (Pt), k =

- -t
1,' .. ,p, then there exist A E A+ and Y E R+ such that V A f(x) +
Vllg(x) = 0 and ytg(x) = o.

3. Duality Theorems

Now, we establish duality theorems for (P) and (WVD).

THEOREM 3.1. Suppose that h, i = 1,," ,p are Pi-invex with re­
spect to'f/ and 8, and gj, j = 1,,·, , rn, are O"j-invex with respect to 'f/
and e. Assume that L:~=IAiPi+ L:7=1 YjO"j ~ 0 for all (U,A,y) E Yw.
Then, for all x E X and for all (u, A, y) E Yw'!(x) ~ feu) + ytg(u)e.

Proof. Suppose that there exist x E X and (u, A, y) E Y w such that
f(x) :5 feu) + ytg(u)e. Since XE A+ and ytg(x) :5 0, we have

Xtf(x) - Xtf(u) + ytg(x) - ytg(u) < O.

By the L:f=1 XiPi -invexity of Xtf(·) and the L.';:1 YjO"j -invexity of
ytg(.), we have

p -
VXtf(u)'f/(x, u) +LXipi I!8(x, u)1I 2 + Vytg(u)1J(x, u) + L:YjO"jIl8(x, u)1I2

i=1 j=1

P m

= [VX
t
f( u) +vytg(u)]'f/(X, it) +(L XiPi + LYjO"j )1!8(x,u)1I 2 < O.

i=1 j=1

Since L:f=1 XiPi +L:7=1 YjO"j ~ 0, [VXtf(u) +Vytg(u)]'f/(x, u) < O. This
is a contradiction.
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THEOREM 3.2. Suppose that h, i = 1",' ,p are Pi-invex with re­
spect to"l and 8 and gj, j = 1"" ,m are uj-invex with respect to"l and
8. Assume that Ef=1 AiPi + Ej=1 YjUj ~ 0for all (U,A,y) E Yw. Let
x is an efficient solution for (P) and assume that x satisfies a constraint
qualification ([7J, [8]) for (Pk ), k = 1,'" ,po Then there exist XE RP
and y E Rm such that (x, X, y) is an efficient solution for (WVD).

Proof. By Theorem 2.2, there exist XE A+ and iJ E R+ such that
(x,X,y) E Yw and ytg(x) = O. By Theorem 3.1, for all (X,A,y) E Yw,
f(x) 1: f(x) + ytg(x)e. Since ytg(x) = 0, f(x) + ytg(x)e <1 f(x) +
ytg(x)e. Hence (x,X,y) is an efficient solution for (WVD).

Now, we establish duality theorems for (P) and (MWVD).

THEOREM 3.3. Suppose that h, i = 1"" ,p are Pi-invex with re­
spect to "l and 8 and gj, j = 1"" ,m are (Jj-invex with respect to "l
and 8. Assume that Ef=l AiPi + Ej=l Yj(Jj ~ 0 for all (u, A, y) E YM.
Then, for all x E X and for all (u, A, y) E YM, f(x) <1 feu).

Proof. By the method similar to the proof of Theorem 3.1, we can
obtain above result.

THEOREM 3.4. Suppose that h, i = 1"" ,p are Pi-invex with re­
spect to"l and 8 and gj, j = 1"" ,m are (Jj-invex with respect to." and
8. Assume that Ef::::l AiPi + :Ej=l Yj(Jj ~ 0for all (u, A, y) E YM. Let
x is an efficient solution for (P) and assume that x satisfies a constraint
qualification ({7J, [8]) for (Pd, k = 1,,,, ,po Then there exist X E RP
and Y E Rm such that (x,"X, y) is an efficient solution for (MWVD).

Proof. By Theorem 2.2, there exist XE A+ and y E R+ such that
(x, 1,y) E YM' By Theorem 3.3, for all (u, A, y) E YM, f(x) <1 feu).
Hence (x,1,y) is an efficient solution for (MWVD).
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