Comm. Korean Math. Soc. 7(1992), No. 1, pp. 85-88

ON THE JOINT WEYL SPECTRUM WITH WEIGHT

YOUNG OH YANG

In [1,2], Ch \bar{o} studied the joint Weyl spectrum for a commuting pair of operators (bounded linear transformations). In this paper, we shall define a more general concept of the so called "weighted (joint) Weyl's spectrum" of a commuting pair of operators and study some of its properties.

Throughout the paper, H is a fixed(complex) Hilbert space of dimension $h \geq \aleph_0$, the cardinality of the set of natural numbers and B(H)denotes the algebra of all bounded operators on H. For each cardinal $\alpha, \aleph_0 \leq \alpha \leq h$, let I_{α} denote the uniform closure of the two-sided ideal in B(H) of all bounded operators of rank less than α . Then the I_{α} are precisely the proper closed two-sided ideals of B(H). Of course, I_{\aleph_0} is the ideal of compact operators and I_h is the maximal closed two sided ideal of B(H). If $\aleph_0 \leq \alpha < \beta \leq h$, then $I_{\alpha} \subset I_{\beta}$ and $I_{\alpha} \neq I_{\beta}[3]$. For each operator T, \hat{T} denotes the coset $T + I_{\alpha}$ in the C^* -algebra $B(H)/I_{\alpha}$.

If T is α -compact i.e., $T \in I_{\alpha}$, then $\sigma(\widehat{T}) = \{0\}$, where $\sigma(\widehat{T})$ denotes the spectrum of \widehat{T} . Since I_{α} are self-adjoint ideals [3], $Re \ \sigma(\widehat{T}) = \{0\} = \sigma(\widehat{ReT})$.

In [4], Yadav and Arora defined the Weyl's spectrum of weight $\alpha, \omega_{\alpha}(T)$, of an operator T on H by

$$\omega_{\alpha}(T) = \bigcap_{K \in I_{\alpha}} \sigma(T+K).$$

For each operator T, $\omega_{\alpha}(T)$ is a nonempty compact subset of $\sigma(T)$, and $0 \notin \omega_{\alpha}(T)$ if and only if T is of the form S + K, where S is invertible and $K \in I_{\alpha}[4]$.

THEOREM 1. If $T = T_1 \oplus T_2$, then $\omega_{\alpha}(T) = \omega_{\alpha}(T_1) \cup \omega_{\alpha}(T_2)$.

Proof. If $z \notin \omega_{\alpha}(T_1) \cup \omega_{\alpha}(T_2)$, then $T_1 - z = S_1 + K_1$, and $T_2 - z = S_2 + K_2$, where S_1, S_2 are invertible and $K_1, K_2 \in I_{\alpha}$. Thus $S_1 \oplus S_2$ is

Received October 31, 1991.

Partially Supported by KOSEF, 911-0102-026-1.

Young Oh Yang

invertible on $H \oplus H$ and $K_1 \oplus K_2 \in I_{\alpha}$. Since $T - z = (S_1 \oplus S_2) + (K_1 \oplus K_2)$, $z \notin \omega_{\alpha}(T)$. Therefore $\omega_{\alpha}(T) \subseteq \omega_{\alpha}(T_1) \cup \omega_{\alpha}(T_2)$.

Conversely if $z \notin \omega_{\alpha}(T)$, then T - z = S + K where S is invertible on $H \oplus H$ and K is α -compact on $H \oplus H$. Hence there eixst invertible operators S_1 and S_2 and α -compact operators K_1, K_2 such that

$$T_1 - z = S_1 + K_1$$
 and $T_2 - z = S_2 + K_2$.

Therefore $z \notin \omega_{\alpha}(T_1) \cup \omega_{\alpha}(T_2)$ and so $\omega_{\alpha}(T_1) \cup \omega_{\alpha}(T_2) \subseteq \omega_{\alpha}(T)$.

DEFINITION 2. Let $A = (A_1, A_2) \subset B(H)$ be a commuting pair of operators. The Taylor joint spectrum $\sigma^T(A)$ of A is defined by $\sigma^T(A) = \{z = (z_1, z_2) \in \mathbb{C}^2 : \alpha(A - z) \text{ is not invertible on } H \oplus H\}$, where

$$\alpha(A-z) = \begin{pmatrix} A_1 - z_1 & A_2 - z_2 \\ -(A_2 - z_2)^* & (A_1 - z_1)^* \end{pmatrix}.$$

DEFINITION 3. Let $A = (A_1, A_2) \subset B(H)$ be a commuting pair. The joint Weyl spectrum of weight α , $\omega_{\alpha}(A)$, of A is defined by

$$\omega_{\alpha}(A) = \cap \{\sigma^{T}(A+K) : K = (K_{1}, K_{2}) \subset I_{\alpha} \text{ and } A+K = (A_{1}+K_{1}, A_{2}+K_{2})$$

is a commuting pair}.

 $z = (z_1, z_2)$ in \mathbb{C}^2 is said to be joint eigenvalue of $A = (A_1, A_2)$ if there exist a nonzero vector x such that $A_i x = z_i x (i = 1, 2)$. $\sigma_p(A)$ is the set of joint eigenvalues of A.

 $z = (z_1, z_2)$ in \mathbb{C}^2 is said to be joint residual eigenvalue of $A = (A_1, A_2)$ if there exists a non-zero vector x such that $A_i^* x = \overline{z_i} x (i = 1, 2)$. $\sigma_r(A)$ is the set of joint residual eigenvalues of A.

From the self-adjointness of I_{α} we see that for any commuting pair $A = (A_1, A_2)$,

$$\omega_{\alpha}(A^*) = \overline{\omega_{\alpha}(A)} = \{(\overline{z}_1, \overline{z}_2) : z = (z_1, z_2) \in \omega_{\alpha}(A)\}.$$

REMARK. For any commuting pair $A = (A_1, A_2), 0 \in \omega_{\alpha}(A)$ iff there eixst a nonsigular pair $S = (S_1, S_2)$ on H and $K = (K_1, K_2) \subset I_{\alpha}$ such that A = S + K and A + K is a commuting pair.

86

THEOREM 4. For any commuting pair $A = (A_1, A_2)$, $\omega_{\alpha}(A)$ is a nonempty compact subset of $\sigma^T(A)$.

Proof. That $\omega_{\alpha}(A)$ is a compact subset of $\sigma^{T}(A)$ follows from the definition. We claim that $\sigma^{T}(\widehat{A}) \subset \omega_{\alpha}(A)$. Let $z = (z_{1}, z_{2}) \in \sigma^{T}(\widehat{A})$. Then $\widehat{A} - z$ is singular in $B(H)/I_{\alpha}$. Let $z \in \omega_{\alpha}(A)$. Then by Remark, there exist a nonsingular pair $S = (S_{1}, S_{2})$ on H and $K = (K_{1}, K_{2}) \subset I_{\alpha}$ such that A - z = S + K and A + K is a commuting pair. Hence $\widehat{A} - z = \widehat{S}$, where \widehat{S} is nonsingular in $B(H)/I_{\alpha}$. This is a contradiction. Hence $z \in \omega_{\alpha}(A)$ and therefore $\omega_{\alpha}(A)$ is a nonempty compact subset of $\sigma^{T}(A)$.

The following theorem is a generalization of $Ch\bar{o}$ and Takaguchi's Theorem [1,2].

THEOREM 5. For any commuting pair $A = (A_1, A_2) \subset B(H)$, of operators

$$\sigma^{T}(A) - \omega_{\alpha}(A) \subseteq \sigma_{p}(A) \cup \sigma_{r}(A).$$

Proof. Let $z = (z_1, z_2) \in \sigma^T(A) - \omega_{\alpha}(A)$. Then since $z \notin \omega_{\alpha}(A)$, there exists $K = (K_1, K_2) \subset I_{\alpha}$ such that $z \notin \sigma^T(A + K)$ and A + K is a commuting pair. Therefore

Therefore,

$$\alpha(A+K-z) = \begin{pmatrix} A_1 + K_1 - z_1 & A_2 + K_2 - z_2 \\ -(A_2 + K_2 - z_2)^* & (A_1 + K_1 - z_1)^* \end{pmatrix}$$

is invertible.

So $\alpha(A+K-z)^*$ is invertible. Let

$$T = \alpha (A + K - z)^{*^{-1}} \cdot \begin{pmatrix} K_1^* & -K_2 \\ K_2^* & K_1 \end{pmatrix}.$$

Then from the self-adjointness of I_{α} , $T \subseteq I_{\alpha}(H \oplus H)$ and $\alpha(A-z)^* = \alpha(A+K-z)^*(I-T)$. Since $T \subseteq I_{\alpha}(H \oplus H)$, the null space of I-T is nonzero. So there exists a nonzero vector $x \oplus y \in H \oplus H$ such that

$$\alpha(A-z)^*(x\oplus y)=0\oplus 0.$$

And since

$$\alpha(A-z)\cdot\alpha(A-z)^* = \begin{pmatrix} \sum_{i=1}^2 (A_i - z_i)(A_i - z_i)^* & 0\\ 0 & \sum_{i=1}^2 (A_i - z_i)^*(A_i - z_i) \end{pmatrix},$$

we get that $z \in \sigma_r(A)$ if x is nonzero, and we get that $z \in \sigma_p(A)$ if y is nonzero. Thus the proof is complete.

References

- 1. M. Chō and M. Takaguchi, On the joint Weyl spectrum, Sci. Rep. Hirosaki Univ 27 (1980), 47-49.
- 2. M. Chō, On joint Weyl spectrum II, Acta Sci. Math. 53 (1989), 381-384.
- 3. G. Edgar, J. Ernest and S.G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21(1) (1971), 61-80.
- 4. B.S. Yadav and S.C. Arora, A generalization of Weyl's spectrum, Glasnik Mathematicki 15(35) (1980), 315-319.
- 5. F.H. Vasilescu, On pairs of commuting operators, 62(1978), 203-207.

Department of Mathematics Cheju National University Cheju 690-756, Korea

88