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INSTANTON INVARIANTS ON 4-MANIFOLDS

YONG SEUNG Cno

O. Introduction

In [2] Donaldson introduced polynomial invariants for smooth, closed
and simply connected 4-manifolds. The polynomial invariants are de­
fined by evaluating certain rational cohomology class with the moduli
space of equivalence classes of instantons in the Banach manifold B of
equivalence classes of connections. Also in [3] he introduce 2-torsion
polynomial invariant for closed simply connected spin 4-manifolds. In
section 1 we summerize the rational cohomology groups of the orbit space
of B. In section 2 we introduce the compactification of the moduli space,
definition of polynomial invariant and Donaldson's main theorems. In
section 3 as examples of indecomposiabity we considered complex al­
gebraic surfaces. In section 4 we introduce the definition of 2-torsion
instanton invariants for spin 4-manifolds and the stable range condition
for compactness. We introduce the Fintushel and Stern Theorem, in
[4] they gave a relation between rational polynomial invariants and 2­
torsion polynomial invariants by connected sum with S2 x 8 2 • Finally
we investigate the polynomial invariants on the space of connected sum.
Theorem 11 is a special case of a Donaldson Theorem, however it is use­
ful to our Thorem 12; the space I(A) obtained from the moduli space
cutting out by codimension 2 submanifolds is the compact 4-manifold
consisting of finite copies of SI x SO(3).

1. Rational Cohomology of the orbit space iJ and B*

Let P be an SU(2) principal bundle over a closed oriented simply
connected 4-manifold M. The principal bundle is determined by the
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Chern number k =< C2(P), [M] > up to isomorphism. The Yang-Mills
energy of an instanton over M is a topological characteristic number
of the bundle P carrying the connection. If P admits any anti-self­
dual connection then k must be non-negative. For each k ?: 0 we have
a moduli space Mk of anti-self-dual connections on P modulo gauge
equivalence, and Mo consists of a single point representing the product
connection on the trivial bundle since M is simply connected.

Let A be an irreducible anti-self-dual connection. The self-dual part
1

of the curvature, F+(A) = 0 where F+ = 2(F + *F). The curvature of

another connection A+a can be written F(A+a) = F(A)+dAa+~[a,a].

Taking the self-dual part we have F+(A + a) = dA+a + ~[a,a]+. The

moduli space M k is obtained by dividing the solutions of this equation
by the action of the gauge transformation group T = Aut P. For small
deformations can be replaced by imposing the Coulomb gauge condition
dA+a = 0, which defines a local transversal slice for the action of T. A
neighbourhood of the point [A] in the moduli space Mk is given by the
sloutions of the differential equations

These are non-linear first order equations, the non-linearlity coming
from the quadratic term [a, a]+. The linearization at A can be written
as an operator dA* EB dA+: n1(adP) _ nO(adP) EB n 2 + (adP) which
is elliptic. The index of this operator dA* Ea dA+ is given by the formula
m = 8k - 3(1 + b+(M)), where b+(M) is the dimension of a maximal
positive subspace of the intersection form on H 2(M). The number m
is the virtual dimension of the moduli space M, for a generic Riemann­
jan metric on M the part of the moduli space consisting of irreducible
connections will be a smooth manifold of dimension m.

Assume that b+(M) > O. Then it can shown that for generic metrics
and k ~ 1 every instanton is irreducible. A reducible anti-self-dual
connection on P corresponds to an element c E H 2(M; R) which is in
the intersection of the integer lattice and the subspace H- C H 2(M : R)
consisting of calsses of anti-self-dual forms. The codimension of H- is
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b+, so if b+ > 0 and H- is in general position. There are no non-zero
classes in the intersection. On the same lines we can show that if b+ > 1,
then for generic I-parameter families of Riemannian metrics on M we
do not encounter any nontrivial reducible connections.

Let B* be the space of all irreducible connections of P modulo gruge
equivalence. It is an infinite dimensioanl manifold and under our assump­
tions the moduli space M k is a submanifold of B*, for generic metrics
on M. The differential topological invariants of the 4-manifold M are
defined by the pairings of the fundamental homology class of the moduli
space M k with the cohomology classes of B*. The moduli space M k

certainly depends on the choice of metric, so let us write mk(g) for the
moduli space defined with respect to a metric 9 on M. Suppose 90, 91 are
two generic metrics on M. We join them by a smooth path gt, t E [0,1)
of metrics. If b+ > 1, then we do not encounter any reducible connec­
tions so we can define w = {([A], t) E B* x [0, IJI[A] E Mk(gt)}. For a
gemeric path 9t the space W is a manifold-with-boundary the boundary
consisting of the disjoint union of M k(90) and M k(9l)' Fix a bases point
in M and let iJ be the 50(3) bundle over B* whose points represent
equivalence classes of connections on a bundle witch is trivialized over
the base point. The space iJ is weakly homotopy equivalent to the space
Map(M, BC) of based maps of degree k from M to the classifying space
BG of the structure group G = 5U(2). One can show that the rational
cohomology of iJ is a polynomial algebra on 2-dimensional cohomoloyg
classes corresponding by the 2-dimensional homology of M. That is, the
cohomology is generated by the image of a natural map [J, : H2(M : Z) -+

H 2(iJ : Z) which is just the slant product in Map s(M, BG) x M with
the 4-dimensional class pulled back from the generator of H 4 (BG) under
the evaluation pairing Maps(M, BG) x M -+ BC. This map [J, descends
to map J.l : H2(M : Z) -+ H 2(B* : Z). The fibration 50(3) -+ iJ -+ B*
give the Gysin sequence :

-+ H n- 4(B* : Q) -+ Hn(B* : Q) -+ HnCB : Q) -+ H n+1- 4(B* : Q) -+ ...

THEOREM 1. (a) H*(iJ: Q) = Q[[J,(ad,'" ,[J,(aA)]

(b) H*(B* : Q) = Q[e,Jl(al,· .. ,J.l(aA)]
where {al,'" ,aA} is a basis of H 2(M: Z), e = J.l(a), < a >= Ho(M).
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2. Rational Instanton Invariants

In general the moduli spaces are not compact, we should compactify
them to get the fundamental homology class. The compactification M"
of Mk is a subset of MkUMk-l x MUMk_l x s2(M)U·. ·Us"(M). The
topology is defined by a notion ofconvergence. If (x1, • •. ,XI) is a point in
the symmetric product s'(M), a sequence converges (up to equivalence)
away from Xl, ••• XI, and the energy desity IF(An)12 converge as measures

I

to IF(A)12 + 811"2 E ~Xi. The closure M" of M"in this topolohgy is
i=l

compact.
If the moduli space Mk has even dimension m = 2d, then for each

k such that 4k > (2b+(M) + 3) there is a natural pairing between the
moduli space M" and a product of cohomology Jl(al) U ... U p(ad) for
any aI, . .. ,ad E H2(M). To define the pairings we should extend Jl(a )
to p(a) E H 2(M,,). For 1 > 0 and Cl E H 2(M) let sl(a) E H 2(s'(M»
be the natural symmetric sum of copies of a and let a(l) = 11"1 *p(a) +
1r2*s'(~) E H2(M"_1 x s'(M», where h is the Poincare dual of a. Then
the extension p.(a) of JL(a) tp H 2(Mk) is a(l) on Mk n(mk-I x s'(M».
For any ab··· ,ad E H 2(M : Z), p(al) U ... U p(ad) E H 2d(M,,) and
we can define a pairing < il(al) U ... n il(ad), [M,,] >. Note that if the
strata M"n(M"_1 x s'(M» making up M" have codimension 2 or more,
the [M,,] is the fundamental homology class for 1> o.

dim(M"_l x s'(M» = dimM"_1 +41 = dim M" - 41 if 1< k

dims"(M) = 4k if 1= k.

Since b+ is odd the condition for S"(M) = 4k to have codimension 2
is that 8k - 3(1 + b+(M) > 4k, which is the stable range condition. The
same pairing can be defined by the other procedure. For a generic surface
~ in M the retriction of any irreducible anti-self-dual connection over M
to :E is again irreducible, we have restriction map r : Mj -+ BE*. If a is
the fundamental class of :E in H2(M) the cohomology class Jl(a) is pull
back from Br;. by r*. We choose a generic codimension 1 submanifold
in the target space which represents by the cohomology class and let VE
be the preimage of this in the moduli space. Let ~b··· ,~d be surfaces
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in M, in general position the intersection MknVE1 n·· .nVEj is compact
if 4k > 3(1 + b+(M». Note that we can choose the VEi so that all the
intersections in all the moduli spaces are transverse. If {An} is a sequence
in VE, C Mk which converges to ([A], Xl'" Xl) and if none of the points
Xi lies in ~j then the limit [A] is in VEj C Mj • This intersection number
is independent of the choice of Riemannian metric on M, and of the
choice of VE, and of the sufaces I: I within their homology classes ai.

THEOREM 2[1]. Let M be a closed, compact and simply connected 4­
manifold with b+(M) > 1 odd and 4k > (3b+(M) + 3). The map qK,M :

sd(H2 (M : Z» -+ Z given by qK,M(I: I ... I:d) = #(Mk n VI n ... n Vd),

counted with sign where d = 4k - ~(1 + b+(M», is a diffeomorpbic

invariant up to sign, natural with respect to orientation preserving dif­
feomorphisms.

REMARK. Let Bk be the space of irreducible connections modulo
equivalence on a bundle of chern class k. Define a topology on the
uruon

Bk= BkU Bk- l x MU Bk- 2 x s2(M) U ...

defining that a wequence {An} converges to ([A], Xl'" Xl) if
(a) the connections converge away from the Xi.

(b) the self-dual parts IP+(AnW of the energy densities are uniformly
bounded.
(c) the Chern-Weil integrands Tr(P(A n )2) converges as measures to the

I

limit Tr(F(A)2) +811'2 L bx,.
i=l

THEOREM 3 [2J. Let M be a 4-manifold which satisfies the condition
of Theorem 2. H M can be written as a smooth, oriented, connected
sum M = M 1#M2 and each of the numbers b+(MI ) > 0, then qK,M is
identically zero for all k.

THEOREM 4 [2]. Let M be a complex algebraic surface and let a E
H2(M) be the Poincare dual to the Kahler class [w] over the surface M.
Then for all large k the invariant qK,M(ad) > O.
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3. Complex Algebraic Surfaces

Let Vn be a non-singular hypersurface of CP3 with degree n. By Lef­
schetz's Theorem Vn is simply connected. For instance, VI = Cp2

, V2 =
S2 X S2, V3 = CP#6CP, V4 = K 3-surface, and the followings are ho­
motopically equivalent,

'" 2 --2 { r m = i[(2m + 1)(2m2
- 4m +3)] - 1

V2m = rmCP #tmCP ,where 2 2
t m = 3[m(8m + 1)]

{
a - 1 [m(m 2 1)]

V m ~ a v:; b V where m - '6 -
2 m 4 m 2, bm = ![(m _ 2)(13m2 _ 22m + 3)] - 1

By Freedman's classification theor:m for the simply connected compact
topological 4-manifolds we have the followings.

THEOREM 5. (a) V2m+I is homeomorphic to rm Cp2#t m CP
2

•

(b) V2m is bomeomorphic to amV4#bmV2.
(c) By Theorem 3.4, in (a), (b) we cannot replace the homeomorpmsms
by the diffeomorpbisms, where Vn for n ~ 5.

A K 3-surface 'V4 is a compact, simply connected complex surface with
trivial canonical bundle. All K 3-surfaces are diffeomorphic but not nec­
essary biholomorphic. Some K 3-surfaces are elliptic surfaces. There
is a holomorphic map 1r : V4 -+ Cpl whose generic fibre is an el­
liptic cureve T 2 = SI X SI. From 'V4 we can construct a family of
complex surfaces Sp,q, p, q > 1 by performing logarithmic transfor­
mations to a pair of generic fibers of 1r with multiplicities p and q.
From a differential topological point of view a logarithmic transform
of multipicity p is performed as follows; Let D 2 be a small disc and
n-l (D2 ) = SI X SI X D2 and c = 8D2 = SI on 1r-l (D2 ). Then
81r(D2

) = 8('V4 \ 1r- l (D2
) = SI X SI X SI = T 3#. Let A,Bb B2

be the simply closed curves generating H l (T
3

) such that A = 8D2
•

Let h be a diffeomorphism of 81r- l D2 ~ 8('V4 \ 1r- l D2
) which takes

h(c) = pA + AI B I + AzBz. We call Sp == (V4 \ 1r-l (D2 » U1r-l (D 2
) the

h
logarithmic transformation of 'V4. The Sp,q are again elliptic surfaces
and are diffeomorphism types realised within the one homotopy class as
'V4 from investigating the Sp,q.
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4. 2-Torsion Instantion Invariants

55

We introduce mod 2 cohomology classes using indices of operators
which make essential use of a spin structure on the manifold. IT M is
a spin 4-manifold there are spin bundles S+, S- corresponding to the
fundamental representation of the two factor Spin(4) = SU(2) x SU(2)
consider the Dirac operator VA : f(S-) --. f(S+). For each connection
A we can associate an extended Dirac operator VA : f(S- @c E) --.
f(S+@c E ).

Since SU(2) ~ SP(l), each of structures and compatible with the
Dirac operator and so the kernel and cokernel of the operator V A are
naturally real vector spaces. Thus the index of the family of these oper­
ators gives a real virtual bundle lndVA E KO(B). For spin 4-manifold
M we define cohomology classes Ui = wi(lndVA ) E BI(B: Z/2). The
numerical index of the coupled operator compares with that of the Dirac
operator C by

lnd V A = C2(E) + 2.

It follows that (-1) E T acts trivially on lnd V A when C2(E) is even.
In this case the bundle descends to a line bundle lndV A -+ B*.

The next theorem is well known.

THEOREM 6. Let M be a closed simply connected 4-manifold.
(1) H M is spin and c2(E) is even, tben 1r1(B*) = Z2.
(2) Neitber M is spin nor c2(E) is even, tben 1r1(B*) = O.

Now consider a simply connected spin 4-manifold M with b+(M) even.
The moduli space of anti-self-dual connections of the SU(2)-bundle over
M with c2(E) = k has its virtual dimnsion 8k - 3(1 + b+(M» = 2d + r.
Let homology classes Zl .•• Zd E H2(M : Z) be represented by generic
surfaces ~l ••• ~d.

THEOREM 7. H 4k > 3(1 + b+(M» + r, tben tbe intersection VEl n
... n VEd n Mk is a compact r-manifold in BZ, for a generic metric on
M, wbere r = 0,1,2,3.

Proof. Let I r = VEl n ... n VEd n Mk. Suppose that {Aa} is a
sequence in Ir. There is a subsequence of {Aa} which cinverges to
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([A], (XI,'" ,Xl)) in Mk • There are at most 21 of the surfaces V which
contain one of the points Xi, so [A] must lie in at least d - 21 of the
VE;. For 0 < 1 < k dim M k - l = 2d + r - 81 ~ 2(d - 21) since [A] lies in
d - 21 of the VE;. Hence r ~ 41. If r ~ 3, then 1 = O. So [A] is a limit
point of the sequence in I r • If 1= k, so A is flat, [A] does not lie in any
of the YEi' so we have d ~ 2k, that is, 4k ~ 3(1 + b+(M)) + r. Since
4k ~ 3(1 + b+(M)) + r. This case does not occur.

THEOREM 8. For any two generic metrics on M, the intersections are
cobordant in B* if r ~ 2.

Proof Suppose go, 91 are two generic metrics on M. Join them by a
smooth path 9t, t E [0,1] of metrics. If r ~ 3, I r = VEl n··· n VE" n M"
is compact for each G t .

Let N = (([A],t) E B* x [O,IJ1[A] E mk(G t )}, and

Vi = {(lA], t) E B* x [O,1]\(A] E V(9t)}
E;

I = N n VI n ... n Vd has (r + 1)-dimension. If r + 1 ~ 3 then I is
compact, i.e. r ~ 2 and with boundary 81 = Ir(Go) U -Ir(gd. For a
generic path gt the space I is a r + 1 manifold-with-boundary consisting
of the disjoint union of Ir(g) and Ir(Gt}.

Note that the group of orientation preserving self-h()motopy equiv­
alences of M acts natrually on the cohomology of B*. If a class q E
H 2(B*) is fixed by this action, the we call such a class (T an invariant
class.

THEOREM 9 [3]. Let M be a compact, smooth, oriented, and simply
connected 4-manifold with b+(M) > 1. Let (T be an invariant class
in Hr(B*,R) for r ~ 2. Hrk > 3(1 + b+(M) + r and the dimension
Mk = 8k-3(I+b+(M) = 2d+r, then the map qK,a,M : H2(M, Z) x··· x
H2(M, Z) ~ R given bYQK,a,MCEl··· :Bd) =< (T, MknVE l n·· ·nVE" >
is up to sign a diJfeomorphic invariant of M, and natural with respect
to orientateion preserving diffeomorpbisms.

REMARK. (a) Let M be a simpley connected spin 4-manifold with
bM + even. The dimMk = 8k-3(1+b+) = 2d+l and4k > 3(1+b+)+1.
Then VEln·· ·nVE"nMk is a compact I-manifold Wl = wl(det lnd'VA ) E
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HI(Bk* : Z2) if k is even, then qk,w,M(EI ... Ed) =< WI, Mk n VEl n
VEd >E Z2·
(b) SimiUary let M be spin and b+ : odd and k : odd, we have W2 E
H 2(B*, Z2) as in [I}. The dimMk = 8k - 3(1 + b+) = 2d + 2. Then the
map qk,W2,M : Symd H2(M : Z) - Z2 given by

THEOREM 10 [4}. Let M be a closed simply connected spin 4-manifold
with a Donaldson polynomial q',M fo degreed where 1 is odd. Then
q'+I,WI,M#S2xS2 is defined and for any El··· Ed E H2(M : Z) and for
x = S2 X 0, Y = 0 X S2 in H2(S2 X S2 j Z) we have q',M(E I •·• Ed) =
q'+I,WI,M#S2xS2(EI,··· ,Ed,x,y) (mod 2)

5. Connected Sums

Let X = X I #X2 be a smooth connected sum. Fix generic gi on the
space Xi with injective radius of Xi > 1. Choose points Xi in Xi end ei :
Tx;X i - Xi is the exponential map. Let 4> be an orientation reversing
isometry, 4> : TXIX I - TX2 X 2 • Fonn the connected sum X = X I #X2

by identifying el(e) E Xl, 0 < A < lel < 1 with e2((A/leD4>(e)) E X 2

and cutting out the A-balls about Xi. Let T~ be a cut off function on Xl.

{

0,

T~(X) = t,
1,

Define a metric g~ on X by

d(xI,x) $ A

d(xI, x) = A

d(xI,x) $ A

X contains isometric compies of Xi\B(Xi,A~).
The riemannian manifold (X,g~) has a neck of radius A. As A - 0

we have (X =XI#X2,g~) - (Xl VX 2 , gl V l).
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THEOREM 11. Suppose M be a closed, smooth, oriented, and simply
connected 4-manifold and let X = M#nCp2 be a smooth connected
sum, 4k > 3(1 + b+(M)).

Then qK,M = qK,M#ncp2 on Sd(H2(M) where 8k-3(1+~+(M» =
2d.

Proof. Choose d subspaces El··· Ed' in general position, in M\ball
where 2d = dimMK X = dimMK M. Fix representatives VI··· Vd such, ,
that all multiple intersections with the (M,g) moduli spaces are trans-
verse. If A is small, the intersections:

l(A) = MK,X(9) n VI n··· n Vd

1 = M K, M (g) nVI n ... nVd can be identified as sets. In fact for given
a point in 1 we can construct a point in 1(A) using A = B{ the prod-

uct connection on nCp
2

). The transverse intersection of the Vi with
MK,M(9) goes over to a single transverse intersection with MK,X(9)').
The points are counted with the same sign by definition of the orienta­
tion. Conversely we need to show that for a sufficiently small Aevery
point of 1(A) can be represented by a point of 1 and flat connection 8 on

nCp2. Suppose that Aa -t 0 and {Aa} is a sequence in l(Aa ). We may
-2

suppose the sequence A converges to Al and A2 on nCP \pts, M\pts
with exceptional sets of sizes 11 , 12 , 12 +k2 ~ 12 +k2 +11 +K l ~ k. Since
4k> 3(1 + b+), we have 12 = 0 and k2 = k. hence 11 = 0 and Al = 8.

Suppose X = M#nCp
2

is a smooth, oriented, connected sum with
b+(M) > 1 odd and 4k > 3(1+b+{x))+4. Let 8k-3(1+b+{x) = 2d+4.
We fix a partition d = dl + d2 and homology class [El]··· [Ed] E H 2

(M, Z) which are represented by surfaces E i in M and [El'],··· ,[Ei] E
H 2(nCp

2
: Z). Assume that 2dl > 3(1 + b+(M)), 2d2 > 3. We define

kll k2 by 8kl - 3(1 + b+(M)) = 2dI, 8k2 - 3 = 2d2+ 1. Let VI,··· , Vdl

and VI',··· , Vd2' be codimension 2 submanifolds corresponding to the
surfaces El··· Ed1 and El I ... Ed:! I respectively. Consider a family of
metrics g(A) on X as before, with the neck diameter O(A!) and con­

verging to given generic metrics gl g2 on M and nCp
2

respectively. Let
1(A) = M K,X(g) n VI n· .. n Vd nVI 'n· .. nvi. Under these assumptions
we have the following theorem.
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TuEOREM 12. 1(>.) is a disjoint union of finite copies of S X SO(3)
for small A.

Proof. Let 11 = Mkt,M nVI n··· nVd. Since 2d1 > 3(1 +b+(M)) 11 is
a finite set of q irreducible self-dual connections for generic metric 9 1 on
M. Let 12 = MK2 n VI' n··· n V)d'. Since 2d2 > 3.and 8k2 = 2d2+412

is a compact I-dimensional manifold for a generic metric 92 on nCp2.
Thus 12 is a disjoint union of circles because we are in the stable range.
Let Al E 11 and A2 E 12 • The gluing procedure shows that for small
>., there is a family of anti-self-dual connections over X parametrized by
a copy of SO(3), namely the gluing parameter, and neighbourhoods of
the points Ai in their respective moduli spaces. Taking the intersection
with the ~ and V/ is the same as removing these two latter sets of
parameters in the family. We obtain a copy (AI, A2 ) of SO(3) in the
intersection 1(>.). A point in 11 and a component of 12 form a complete
connected component SI X SO(3) of 1(>'). The sets It, 12 have finite
components of points and circles respectively. 1(>.) contains the disjoint
union of 1111 - (# of components of 12 ) copies of S' X SO(3). On the
other hand, suppose that we have a sequence >'n -t 0 and a sequence
{An} of connections in I(>'n). By Ublenbeck weak compactness theorem,
after taking a subsequence we can suppose that the subsequence {An}
converges to limits B 1 , B2 over the complement of exceptional sets of
sizes III 12 in the two manifolds M and nCp2. Where B 1 and B2 are anti­
self-dual connections on bundles with chern numbers k 1 , k 2 over M and
nCp2 respectively. Then we have an energy inequality k2+k2+11 +12 5
k. By the stable range conditions at least one of the ki must be strictly
positive. Suppose that k2 is zero. B2 is the trivial flat connection. Then

each surface ~/ must contain one of the 12 exceptional points in nCp2.

So d2 ~ 212 -

Over the Mkt,M, at least d1 - 211 of the Vi must meet the moduli
space MKt,M, so s(d1 - 211 ) 5 8k1 - 3(1 + b+(X)) - 811 , Since 2d1 >
3(1 + b+(M)) we have contradiction. Thus we have k2 =f:. 0 and 11 = O.
Similaries we have k l f= 0 and 12 = O. Thus we have k = k1 +k2 , 11 +12 =
oand so, B l E 11 = Mkt M n VI n '" n Vd and B2 E 12 = Mk CP2 n, 2,n

VI' n ... n Vd' and B 2 is contained one of the circles. It follows that for
large n the point A(n) lies in the component SI X SO(3), for small >..
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REMARK. In Theorem 7, under the stable rang condition 4k > 3(1 +
b+)+r ifr ~ 3, then 1(..\) is compact. In Theorem 12 even though r = 4
our 4-manifold 1(..\) is compact.
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